pytorchvideo
copied
Jael Gu
3 years ago
5 changed files with 314 additions and 1 deletions
@ -1,2 +1,112 @@ |
|||||
# pytorchvideo |
|
||||
|
# Video Classification with Pytorchvideo |
||||
|
|
||||
|
*Author: [Jael Gu](https://github.com/jaelgu)* |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
A video classification operator is able to predict labels (and corresponding scores) |
||||
|
and extracts features given the input video. |
||||
|
It preprocesses video frames with video transforms and then loads pre-trained models by model names. |
||||
|
This operator has implemented pre-trained models from [Pytorchvideo](https://github.com/facebookresearch/pytorchvideo) |
||||
|
and maps vectors with labels provided by the [Kinetics400 Dataset](https://deepmind.com/research/open-source/kinetics). |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Use the pretrained SLOWFAST model ('slowfast_r50') |
||||
|
to classify and generate a vector for the given video path './archery.mp4' ([download](https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4)). |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
( |
||||
|
towhee.glob('./archery.mp4') |
||||
|
.video_decode.ffmpeg() |
||||
|
.video_classification.pytorchvideo(model_name='slowfast_r50') |
||||
|
.to_list() |
||||
|
) |
||||
|
``` |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
( |
||||
|
towhee.glob['path']('./archery.mp4') |
||||
|
.video_decode.ffmpeg['path', 'frames']() |
||||
|
.video_classification.pytorchvideo['frames', ('labels', 'scores', 'features')]( |
||||
|
model_name='slowfast_r50') |
||||
|
.select['labels', 'scores', 'features']() |
||||
|
.show() |
||||
|
) |
||||
|
``` |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***video_classification.pytorchvideo( |
||||
|
model_name='x3d_xs', skip_preprocess=False, classmap=None, topk=5)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***model_name***: *str* |
||||
|
|
||||
|
The name of pre-trained model from pytorchvideo hub. |
||||
|
|
||||
|
Supported model names: |
||||
|
- c2d_r50 |
||||
|
- i3d_r50 |
||||
|
- slow_r50 |
||||
|
- slowfast_r50 |
||||
|
- slowfast_r101 |
||||
|
- x3d_xs |
||||
|
- x3d_s |
||||
|
- x3d_m |
||||
|
- mvit_base_16x4 |
||||
|
- mvit_base_32x3 |
||||
|
|
||||
|
***skip_preprocess***: *bool* |
||||
|
|
||||
|
Flag to control whether to skip UniformTemporalSubsample in video transforms, defaults to False. |
||||
|
If set to True, the step of UniformTemporalSubsample will be skipped. |
||||
|
In this case, the user should guarantee that all the input video frames are already reprocessed properly, |
||||
|
and thus can be fed to model directly. |
||||
|
|
||||
|
***classmap***: *Dict[str: int]*: |
||||
|
|
||||
|
Dictionary that maps class names to one hot vectors. |
||||
|
If not given, the operator will load the default class map dictionary. |
||||
|
|
||||
|
***topk***: *int* |
||||
|
|
||||
|
The topk labels & scores to present in result. The default value is 5. |
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
Given a video data, the video classification operator predicts a list of class labels |
||||
|
and generates a video embedding in numpy.ndarray. |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***frames***: *List[VideoFrame]* |
||||
|
|
||||
|
Video frames in towhee.types.video_frame.VideoFrame. |
||||
|
|
||||
|
|
||||
|
**Returns**: |
||||
|
|
||||
|
***labels, scores, features***: *Tuple(List[str], List[float], numpy.ndarray)* |
||||
|
|
||||
|
- labels: predicted class names. |
||||
|
- scores: possibility scores ranking from high to low corresponding to predicted labels. |
||||
|
- features: a video embedding in shape of (num_features,) representing features extracted by model. |
||||
|
@ -0,0 +1,19 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from .pytorchvideo import PytorchVideo |
||||
|
|
||||
|
|
||||
|
def pytorchvideo(**kwargs): |
||||
|
return PytorchVideo(**kwargs) |
File diff suppressed because one or more lines are too long
@ -0,0 +1,179 @@ |
|||||
|
import logging |
||||
|
import os |
||||
|
import json |
||||
|
from pathlib import Path |
||||
|
from typing import List, Union, Iterable, Callable |
||||
|
|
||||
|
import torch |
||||
|
from torch import nn |
||||
|
import numpy |
||||
|
|
||||
|
from towhee import register |
||||
|
from towhee.types import VideoFrame |
||||
|
from towhee.operator.base import NNOperator |
||||
|
from towhee.models.utils.video_transforms import transform_video |
||||
|
|
||||
|
log = logging.getLogger() |
||||
|
|
||||
|
|
||||
|
@register(output_schema=['labels', 'scores', 'features']) |
||||
|
class PytorchVideo(NNOperator): |
||||
|
""" |
||||
|
Generate a list of class labels given a video input data. |
||||
|
Default labels are from [Kinetics400 Dataset](https://deepmind.com/research/open-source/kinetics). |
||||
|
|
||||
|
Args: |
||||
|
model_name (`str`): |
||||
|
The pretrained model name from torch hub. |
||||
|
Supported model names: |
||||
|
- c2d_r50 |
||||
|
- i3d_r50 |
||||
|
- slow_r50 |
||||
|
- slowfast_r50 |
||||
|
- slowfast_r101 |
||||
|
- x3d_xs |
||||
|
- x3d_s |
||||
|
- x3d_m |
||||
|
- mvit_base_16x4 |
||||
|
- mvit_base_32x3 |
||||
|
skip_preprocess (`str`): |
||||
|
Flag to skip video transforms. |
||||
|
classmap (`str=None`): |
||||
|
Path of the json file to match class names. |
||||
|
topk (`int=5`): |
||||
|
The number of classification labels to be returned (ordered by possibility from high to low). |
||||
|
""" |
||||
|
|
||||
|
def __init__( |
||||
|
self, |
||||
|
model_name: str = 'x3d_xs', |
||||
|
framework: str = 'pytorch', |
||||
|
skip_preprocess: bool = False, |
||||
|
classmap: str = None, |
||||
|
topk: int = 5, |
||||
|
) -> None: |
||||
|
super().__init__(framework=framework) |
||||
|
self.model_name = model_name |
||||
|
self.skip_preprocess = skip_preprocess |
||||
|
self.topk = topk |
||||
|
if classmap is None: |
||||
|
class_file = os.path.join(str(Path(__file__).parent), 'kinetics_400.json') |
||||
|
with open(class_file, 'r') as f: |
||||
|
kinetics_classes = json.load(f) |
||||
|
self.classmap = {} |
||||
|
for k, v in kinetics_classes.items(): |
||||
|
self.classmap[v] = str(k).replace('"', '') |
||||
|
else: |
||||
|
self.classmap = classmap |
||||
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
||||
|
|
||||
|
self.model = torch.hub.load('facebookresearch/pytorchvideo', model=model_name, pretrained=True) |
||||
|
self.model.eval() |
||||
|
self.model.to(self.device) |
||||
|
|
||||
|
def __call__(self, frames: List[VideoFrame]): |
||||
|
""" |
||||
|
Args: |
||||
|
frames (`List[VideoFrame]`): |
||||
|
Video frames in towhee.types.video_frame.VideoFrame. |
||||
|
|
||||
|
Returns: |
||||
|
labels, scores: |
||||
|
A tuple of lists (labels, scores). |
||||
|
video embedding: |
||||
|
A video embedding in numpy.ndarray. |
||||
|
""" |
||||
|
# Convert list of towhee.types.Image to numpy.ndarray in float32 |
||||
|
video = numpy.stack([img.astype(numpy.float32) / 255. for img in frames], axis=0) |
||||
|
assert len(video.shape) == 4 |
||||
|
video = video.transpose(3, 0, 1, 2) # twhc -> ctwh |
||||
|
|
||||
|
if self.skip_preprocess: |
||||
|
data = transform_video( |
||||
|
video=video, |
||||
|
model_name=self.model_name, |
||||
|
num_frames=None |
||||
|
) |
||||
|
else: |
||||
|
data = transform_video( |
||||
|
video=video, |
||||
|
model_name=self.model_name |
||||
|
) |
||||
|
if self.model_name.startswith('slowfast'): |
||||
|
inputs = [data[0].to(self.device)[None, ...], data[1].to(self.device)[None, ...]] |
||||
|
else: |
||||
|
inputs = data.to(self.device)[None, ...] |
||||
|
|
||||
|
feats, outs = self.new_forward(inputs) |
||||
|
features = feats.to('cpu').squeeze(0).detach().numpy() |
||||
|
|
||||
|
post_act = torch.nn.Softmax(dim=1) |
||||
|
preds = post_act(outs) |
||||
|
pred_scores, pred_classes = preds.topk(k=self.topk) |
||||
|
labels = [self.classmap[int(i)] for i in pred_classes[0]] |
||||
|
scores = [round(float(x), 5) for x in pred_scores[0]] |
||||
|
return labels, scores, features |
||||
|
|
||||
|
def new_forward(self, x: Union[torch.Tensor, list]): |
||||
|
""" |
||||
|
Generate embeddings returned by the second last hidden layer. |
||||
|
|
||||
|
Args: |
||||
|
x (`Union[torch.Tensor, list]`): |
||||
|
tensor or list of input video after transforms |
||||
|
|
||||
|
Returns: |
||||
|
Tensor of layer outputs. |
||||
|
""" |
||||
|
blocks = list(self.model.children()) |
||||
|
if len(blocks) == 1: |
||||
|
blocks = blocks[0] |
||||
|
if self.model_name.startswith('x3d'): |
||||
|
sub_blocks = list(blocks[-1].children()) |
||||
|
extractor = FeatureExtractor(self.model, sub_blocks, layer=0) |
||||
|
elif self.model_name.startswith('mvit'): |
||||
|
sub_blocks = list(blocks[-1].children()) |
||||
|
extractor = FeatureExtractor(self.model, sub_blocks, layer=0) |
||||
|
else: |
||||
|
extractor = FeatureExtractor(self.model, blocks, layer=-2) |
||||
|
features, outs = extractor(x) |
||||
|
if features.dim() == 5: |
||||
|
global_pool = nn.AdaptiveAvgPool3d(1) |
||||
|
features = global_pool(features) |
||||
|
return features.flatten(), outs |
||||
|
|
||||
|
def get_model_name(self): |
||||
|
full_list = [ |
||||
|
'c2d_r50', |
||||
|
'i3d_r50', |
||||
|
'slow_r50', |
||||
|
'slowfast_r50', |
||||
|
'slowfast_r101', |
||||
|
'x3d_xs', |
||||
|
'x3d_s', |
||||
|
'x3d_m', |
||||
|
'mvit_base_16x4', |
||||
|
'mvit_base_32x3' |
||||
|
] |
||||
|
full_list.sort() |
||||
|
return full_list |
||||
|
|
||||
|
|
||||
|
class FeatureExtractor(nn.Module): |
||||
|
def __init__(self, model: nn.Module, blocks: List[nn.Module], layer: int): |
||||
|
super().__init__() |
||||
|
self.model = model |
||||
|
self.features = None |
||||
|
|
||||
|
target_layer = blocks[layer] |
||||
|
self.handler = target_layer.register_forward_hook(self.save_outputs_hook()) |
||||
|
|
||||
|
def save_outputs_hook(self) -> Callable: |
||||
|
def fn(_, __, output): |
||||
|
self.features = output |
||||
|
return fn |
||||
|
|
||||
|
def forward(self, x): |
||||
|
outs = self.model(x) |
||||
|
self.handler.remove() |
||||
|
return self.features, outs |
@ -0,0 +1,4 @@ |
|||||
|
# torch>=1.8.0 |
||||
|
# torchvision>=0.9.0 |
||||
|
# pytorchvideo |
||||
|
# towhee>=0.6.0 |
Loading…
Reference in new issue