copied
Readme
Files and versions
Updated 2 years ago
action-classification
Action Classification with Pytorchvideo
Author: Jael Gu
Description
An action classification operator is able to predict labels of human activities (with corresponding scores) and extracts features given the input video. It preprocesses video frames with video transforms and then loads pre-trained models by model names. This operator has implemented pre-trained models from Pytorchvideo and maps vectors with labels provided by the Kinetics400 Dataset.
Code Example
Use the pretrained SLOWFAST model ('slowfast_r50') to classify and generate a vector for the given video path './archery.mp4' (download).
Write the pipeline in simplified style:
import towhee
(
towhee.glob('./archery.mp4')
.video_decode.ffmpeg()
.action_classification.pytorchvideo(model_name='slowfast_r50')
.show()
)
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
(
towhee.glob['path']('./archery.mp4')
.video_decode.ffmpeg['path', 'frames']()
.action_classification.pytorchvideo['frames', ('labels', 'scores', 'features')](
model_name='slowfast_r50')
.select['path', 'labels', 'scores', 'features']()
.show(formatter={'path': 'video_path'})
)
Factory Constructor
Create the operator via the following factory method
action_classification.pytorchvideo( model_name='x3d_xs', skip_preprocess=False, classmap=None, topk=5)
Parameters:
model_name: str
The name of pre-trained model from pytorchvideo hub.
Supported model names:
- c2d_r50
- i3d_r50
- slow_r50
- slowfast_r50
- slowfast_r101
- x3d_xs
- x3d_s
- x3d_m
- mvit_base_16x4
- mvit_base_32x3
skip_preprocess: bool
Flag to control whether to skip UniformTemporalSubsample in video transforms, defaults to False. If set to True, the step of UniformTemporalSubsample will be skipped. In this case, the user should guarantee that all the input video frames are already reprocessed properly, and thus can be fed to model directly.
classmap: Dict[str: int]:
Dictionary that maps class names to one hot vectors. If not given, the operator will load the default class map dictionary.
topk: int
The topk labels & scores to present in result. The default value is 5.
Interface
Given a video data, the video classification operator predicts a list of class labels and generates a video embedding in numpy.ndarray.
Parameters:
frames: List[VideoFrame]
Video frames in towhee.types.video_frame.VideoFrame.
Returns:
labels, scores, features: Tuple(List[str], List[float], numpy.ndarray)
- labels: predicted class names.
- scores: possibility scores ranking from high to low corresponding to predicted labels.
- features: a video embedding in shape of (num_features,) representing features extracted by model.
Jael Gu
258de970aa
| 16 Commits | ||
---|---|---|---|
.gitattributes |
1.1 KiB
|
3 years ago | |
README.md |
3.2 KiB
|
2 years ago | |
__init__.py |
696 B
|
2 years ago | |
kinetics_400.json |
10 KiB
|
2 years ago | |
pytorchvideo.py |
5.8 KiB
|
2 years ago | |
requirements.txt |
68 B
|
2 years ago | |
result1.png |
14 KiB
|
2 years ago | |
result2.png |
92 KiB
|
2 years ago |