logo
Browse Source

add tsm op

Signed-off-by: Xinyu Ge <xinyu.ge@zilliz.com>
main
Xinyu Ge 2 years ago
parent
commit
0497d0d811
  1. 84
      README.md
  2. BIN
      TSM_kinetics_RGB_resnet50_shift8_blockres_avg_segment8_e50.pth
  3. 19
      __init__.py
  4. BIN
      archery.mp4
  5. 1
      kinetics_400.json
  6. 108
      tsm.py

84
README.md

@ -1,2 +1,84 @@
# tsm
# Video Classification with TSM
*Author: [Xinyu Ge](https://github.com/gexy185)*
<br />
## Description
A video classification operator generates labels (and corresponding scores) and extracts features for the input video.
It transforms the video into frames and loads pre-trained models by model names.
This operator has implemented pre-trained models from [TSM](https://arxiv.org/abs/1811.08383)
and maps vectors with labels provided by datasets used for pre-training.
<br />
## Code Example
Use the pretrained ActionClip model to classify and generate a vector for the given video path './archery.mp4'
([download](https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4)).
*Write the pipeline in simplified style*:
- Predict labels (default):
```python
import towhee
(
towhee.glob('./archery.mp4')
.video_decode.ffmpeg()
.video_classification.tsm(
model_name='tsm_k400_r50_seg8', topk=5)
.show()
)
```
<br />
## Factory Constructor
Create the operator via the following factory method
***video_classification.tsm(
model_name='tsm_k400_r50_seg8', skip_preprocess=False, classmap=None, topk=5)***
**Parameters:**
***model_name***: *str*
​ The name of pre-trained clip model.
​ Supported model names:
- tsm_k400_r50_seg8
***skip_preprocess***: *bool*
​ Flag to control whether to skip video transforms, defaults to False.
If set to True, the step to transform videos will be skipped.
In this case, the user should guarantee that all the input video frames are already reprocessed properly,
and thus can be fed to model directly.
***classmap***: *Dict[str: int]*:
​ Dictionary that maps class names to one hot vectors.
If not given, the operator will load the default class map dictionary.
***topk***: *int*
​ The topk labels & scores to present in result. The default value is 5.
## Interface
A video classification operator generates a list of class labels
and a corresponding vector in numpy.ndarray given a video input data.
**Parameters:**
***video***: *Union[str, numpy.ndarray]*
​ Input video data using local path in string or video frames in ndarray.
**Returns**: *(list, list)*
​ A tuple of (labels, scores),
which contains lists of predicted class names and corresponding scores.

BIN
TSM_kinetics_RGB_resnet50_shift8_blockres_avg_segment8_e50.pth

Binary file not shown.

19
__init__.py

@ -0,0 +1,19 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .tsm import Tsm
def tsm(**kwargs):
return Tsm(**kwargs)

BIN
archery.mp4

Binary file not shown.

1
kinetics_400.json

File diff suppressed because one or more lines are too long

108
tsm.py

@ -0,0 +1,108 @@
import logging
import os
import json
from pathlib import Path
from typing import List
import torch
import numpy
from towhee import register
from towhee.operator.base import NNOperator
from towhee.types.video_frame import VideoFrame
from towhee.models.utils.video_transforms import get_configs, transform_video
from towhee.models.tsm.tsm import create_model
log = logging.getLogger()
@register(output_schema=['labels', 'scores', 'features'])
class Tsm(NNOperator):
"""
Generate a list of class labels given a video input data.
Default labels are from [Kinetics400 Dataset](https://deepmind.com/research/open-source/kinetics).
Args:
model_name (`str`):
Supported model names:
- tsm_k400_r50_seg8
skip_preprocess (`str`):
Flag to skip video transforms.
predict (`bool`):
Flag to control whether predict labels. If False, then return video embedding.
classmap (`str=None`):
Path of the json file to match class names.
topk (`int=5`):
The number of classification labels to be returned (ordered by possibility from high to low).
"""
def __init__(self,
model_name: str = 'tsm_k400_r50_seg8',
framework: str = 'pytorch',
skip_preprocess: bool = False,
classmap: str = None,
topk: int = 5,
):
super().__init__(framework=framework)
self.model_name = model_name
self.skip_preprocess = skip_preprocess
self.topk = topk
if 'k400' in model_name:
self.dataset_name = 'kinetics_400'
if classmap is None:
class_file = os.path.join(str(Path(__file__).parent), self.dataset_name+'.json')
with open(class_file, "r") as f:
kinetics_classes = json.load(f)
self.classmap = {}
for k, v in kinetics_classes.items():
self.classmap[v] = str(k).replace('"', '')
else:
self.classmap = classmap
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
if model_name == 'tsm_k400_r50_seg8':
self.weights_path = os.path.join(str(Path(__file__).parent), 'TSM_kinetics_RGB_resnet50_shift8_blockres_avg_segment8_e50.pth')
self.model = create_model(model_name=model_name, pretrained=True, weights_path=self.weights_path, device=self.device)
self.transform_cfgs = get_configs(
side_size=224,
crop_size=224,
num_frames=8,
mean=self.model.input_mean,
std=self.model.input_std,
)
def __call__(self, video: List[VideoFrame]):
"""
Args:
video (`List[VideoFrame]`):
Video path in string.
Returns:
(labels, scores)
A tuple of lists (labels, scores).
OR emb
Video embedding.
"""
# Convert list of towhee.types.Image to numpy.ndarray in float32
video = numpy.stack([img.astype(numpy.float32)/255. for img in video], axis=0)
assert len(video.shape) == 4
video = video.transpose(3, 0, 1, 2) # twhc -> ctwh
# Transform video data given configs
if self.skip_preprocess:
self.cfg.update(num_frames=None)
data = transform_video(
video=video,
**self.transform_cfgs
)
inputs = data.to(self.device)[None, ...]
feats = self.model.forward_features(inputs)
features = feats.to('cpu').squeeze(0).detach().numpy()
outs = self.model(feats)
post_act = torch.nn.Softmax(dim=1)
preds = post_act(outs)
pred_scores, pred_classes = preds.topk(k=self.topk)
labels = [self.classmap[int(i)] for i in pred_classes[0]]
scores = [round(float(x), 5) for x in pred_scores[0]]
return labels, scores, features
Loading…
Cancel
Save