tsm
copied
Xinyu Ge
2 years ago
6 changed files with 211 additions and 1 deletions
@ -1,2 +1,84 @@ |
|||||
# tsm |
|
||||
|
# Video Classification with TSM |
||||
|
|
||||
|
*Author: [Xinyu Ge](https://github.com/gexy185)* |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
A video classification operator generates labels (and corresponding scores) and extracts features for the input video. |
||||
|
It transforms the video into frames and loads pre-trained models by model names. |
||||
|
This operator has implemented pre-trained models from [TSM](https://arxiv.org/abs/1811.08383) |
||||
|
and maps vectors with labels provided by datasets used for pre-training. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Use the pretrained ActionClip model to classify and generate a vector for the given video path './archery.mp4' |
||||
|
([download](https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4)). |
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
- Predict labels (default): |
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
( |
||||
|
towhee.glob('./archery.mp4') |
||||
|
.video_decode.ffmpeg() |
||||
|
.video_classification.tsm( |
||||
|
model_name='tsm_k400_r50_seg8', topk=5) |
||||
|
.show() |
||||
|
) |
||||
|
``` |
||||
|
<br /> |
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***video_classification.tsm( |
||||
|
model_name='tsm_k400_r50_seg8', skip_preprocess=False, classmap=None, topk=5)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***model_name***: *str* |
||||
|
|
||||
|
The name of pre-trained clip model. |
||||
|
|
||||
|
Supported model names: |
||||
|
- tsm_k400_r50_seg8 |
||||
|
|
||||
|
***skip_preprocess***: *bool* |
||||
|
|
||||
|
Flag to control whether to skip video transforms, defaults to False. |
||||
|
If set to True, the step to transform videos will be skipped. |
||||
|
In this case, the user should guarantee that all the input video frames are already reprocessed properly, |
||||
|
and thus can be fed to model directly. |
||||
|
|
||||
|
***classmap***: *Dict[str: int]*: |
||||
|
|
||||
|
Dictionary that maps class names to one hot vectors. |
||||
|
If not given, the operator will load the default class map dictionary. |
||||
|
|
||||
|
***topk***: *int* |
||||
|
|
||||
|
The topk labels & scores to present in result. The default value is 5. |
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
A video classification operator generates a list of class labels |
||||
|
and a corresponding vector in numpy.ndarray given a video input data. |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***video***: *Union[str, numpy.ndarray]* |
||||
|
|
||||
|
Input video data using local path in string or video frames in ndarray. |
||||
|
|
||||
|
|
||||
|
**Returns**: *(list, list)* |
||||
|
|
||||
|
A tuple of (labels, scores), |
||||
|
which contains lists of predicted class names and corresponding scores. |
||||
|
Binary file not shown.
@ -0,0 +1,19 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from .tsm import Tsm |
||||
|
|
||||
|
|
||||
|
def tsm(**kwargs): |
||||
|
return Tsm(**kwargs) |
Binary file not shown.
File diff suppressed because one or more lines are too long
@ -0,0 +1,108 @@ |
|||||
|
import logging |
||||
|
import os |
||||
|
import json |
||||
|
from pathlib import Path |
||||
|
from typing import List |
||||
|
|
||||
|
import torch |
||||
|
import numpy |
||||
|
|
||||
|
from towhee import register |
||||
|
from towhee.operator.base import NNOperator |
||||
|
from towhee.types.video_frame import VideoFrame |
||||
|
from towhee.models.utils.video_transforms import get_configs, transform_video |
||||
|
from towhee.models.tsm.tsm import create_model |
||||
|
|
||||
|
log = logging.getLogger() |
||||
|
|
||||
|
|
||||
|
@register(output_schema=['labels', 'scores', 'features']) |
||||
|
class Tsm(NNOperator): |
||||
|
""" |
||||
|
Generate a list of class labels given a video input data. |
||||
|
Default labels are from [Kinetics400 Dataset](https://deepmind.com/research/open-source/kinetics). |
||||
|
Args: |
||||
|
model_name (`str`): |
||||
|
Supported model names: |
||||
|
- tsm_k400_r50_seg8 |
||||
|
skip_preprocess (`str`): |
||||
|
Flag to skip video transforms. |
||||
|
predict (`bool`): |
||||
|
Flag to control whether predict labels. If False, then return video embedding. |
||||
|
classmap (`str=None`): |
||||
|
Path of the json file to match class names. |
||||
|
topk (`int=5`): |
||||
|
The number of classification labels to be returned (ordered by possibility from high to low). |
||||
|
""" |
||||
|
def __init__(self, |
||||
|
model_name: str = 'tsm_k400_r50_seg8', |
||||
|
framework: str = 'pytorch', |
||||
|
skip_preprocess: bool = False, |
||||
|
classmap: str = None, |
||||
|
topk: int = 5, |
||||
|
): |
||||
|
super().__init__(framework=framework) |
||||
|
self.model_name = model_name |
||||
|
self.skip_preprocess = skip_preprocess |
||||
|
self.topk = topk |
||||
|
if 'k400' in model_name: |
||||
|
self.dataset_name = 'kinetics_400' |
||||
|
if classmap is None: |
||||
|
class_file = os.path.join(str(Path(__file__).parent), self.dataset_name+'.json') |
||||
|
with open(class_file, "r") as f: |
||||
|
kinetics_classes = json.load(f) |
||||
|
self.classmap = {} |
||||
|
for k, v in kinetics_classes.items(): |
||||
|
self.classmap[v] = str(k).replace('"', '') |
||||
|
else: |
||||
|
self.classmap = classmap |
||||
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
||||
|
if model_name == 'tsm_k400_r50_seg8': |
||||
|
self.weights_path = os.path.join(str(Path(__file__).parent), 'TSM_kinetics_RGB_resnet50_shift8_blockres_avg_segment8_e50.pth') |
||||
|
self.model = create_model(model_name=model_name, pretrained=True, weights_path=self.weights_path, device=self.device) |
||||
|
self.transform_cfgs = get_configs( |
||||
|
side_size=224, |
||||
|
crop_size=224, |
||||
|
num_frames=8, |
||||
|
mean=self.model.input_mean, |
||||
|
std=self.model.input_std, |
||||
|
) |
||||
|
|
||||
|
def __call__(self, video: List[VideoFrame]): |
||||
|
""" |
||||
|
Args: |
||||
|
video (`List[VideoFrame]`): |
||||
|
Video path in string. |
||||
|
|
||||
|
Returns: |
||||
|
(labels, scores) |
||||
|
A tuple of lists (labels, scores). |
||||
|
OR emb |
||||
|
Video embedding. |
||||
|
""" |
||||
|
# Convert list of towhee.types.Image to numpy.ndarray in float32 |
||||
|
video = numpy.stack([img.astype(numpy.float32)/255. for img in video], axis=0) |
||||
|
assert len(video.shape) == 4 |
||||
|
video = video.transpose(3, 0, 1, 2) # twhc -> ctwh |
||||
|
|
||||
|
# Transform video data given configs |
||||
|
if self.skip_preprocess: |
||||
|
self.cfg.update(num_frames=None) |
||||
|
|
||||
|
data = transform_video( |
||||
|
video=video, |
||||
|
**self.transform_cfgs |
||||
|
) |
||||
|
inputs = data.to(self.device)[None, ...] |
||||
|
|
||||
|
feats = self.model.forward_features(inputs) |
||||
|
features = feats.to('cpu').squeeze(0).detach().numpy() |
||||
|
|
||||
|
outs = self.model(feats) |
||||
|
post_act = torch.nn.Softmax(dim=1) |
||||
|
preds = post_act(outs) |
||||
|
pred_scores, pred_classes = preds.topk(k=self.topk) |
||||
|
labels = [self.classmap[int(i)] for i in pred_classes[0]] |
||||
|
scores = [round(float(x), 5) for x in pred_scores[0]] |
||||
|
|
||||
|
return labels, scores, features |
Loading…
Reference in new issue