logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 2 years ago

action-classification

Video Classification with TSM

Author: Xinyu Ge


Description

A video classification operator generates labels (and corresponding scores) and extracts features for the input video. It transforms the video into frames and loads pre-trained models by model names. This operator has implemented pre-trained models from TSM and maps vectors with labels provided by datasets used for pre-training.


Code Example

Use the pretrained ActionClip model to classify and generate a vector for the given video path './archery.mp4' (download).

Write the pipeline in simplified style:

  • Predict labels (default):
import towhee

(
    towhee.glob('./archery.mp4') 
          .video_decode.ffmpeg()
          .action_classification.tsm(
            model_name='tsm_k400_r50_seg8', topk=5)
          .show()
)


Factory Constructor

Create the operator via the following factory method

video_classification.tsm( model_name='tsm_k400_r50_seg8', skip_preprocess=False, classmap=None, topk=5)

Parameters:

model_name: str

​ The name of pre-trained tsm model.

​ Supported model names:

  • tsm_k400_r50_seg8

skip_preprocess: bool

​ Flag to control whether to skip video transforms, defaults to False. If set to True, the step to transform videos will be skipped. In this case, the user should guarantee that all the input video frames are already reprocessed properly, and thus can be fed to model directly.

classmap: Dict[str: int]:

​ Dictionary that maps class names to one hot vectors. If not given, the operator will load the default class map dictionary.

topk: int

​ The topk labels & scores to present in result. The default value is 5.

Interface

A video classification operator generates a list of class labels and a corresponding vector in numpy.ndarray given a video input data.

Parameters:

video: Union[str, numpy.ndarray]

​ Input video data using local path in string or video frames in ndarray.

Returns: (list, list, torch.Tensor)

​ A tuple of (labels, scores, features), which contains lists of predicted class names and corresponding scores.

gexy5 35a1502c6d modify 10 Commits
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 2 years ago
file-icon README.md
2.3 KiB
download-icon
modify 2 years ago
file-icon TSM_kinetics_RGB_resnet50_shift8_blockres_avg_segment8_e50.pth
93 MiB
download-icon
modify 2 years ago
file-icon __init__.py
660 B
download-icon
add tsm op 2 years ago
file-icon kinetics_400.json
10 KiB
download-icon
add tsm op 2 years ago
file-icon tsm.py
4.4 KiB
download-icon
modify 2 years ago