faiss-index
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
Updated 3 years ago
ann-search
Operator: ANN Search: Faiss
author: shiyu
Desription
Search embedding in Faiss, please make sure you have inserted data to Faiss before search.
Code Example
Insert data into Faiss first
import numpy as np
import towhee
vec = np.random.random((10, 100)).astype('float32')
ids = list(i for i in range(10))
x = towhee.dc['id'](ids) \
.runas_op['id', 'vec'](func=lambda x: vec[x]) \
.to_faiss['id', 'vec'](findex='index.bin')
Example
Write the pipeline in simplified style:
query = vec[0:2]
towhee.dc(query) \
.ann_search.faiss(findex='index.bin')
Write a same pipeline with explicit inputs/outputs name specifications:
query = vec[0:2]
towhee.dc['vec'](query) \
.ann_search.faiss['vec', 'results'](findex='index.bin') \
.show()

Factory Constructor
Create the operator via the following factory method:
ann_search.faiss(findex)
Parameters:
findex: str or faiss.INDEX
The path to faiss index file or faiss index.
Interface
Parameters:
query: list
Query embeddings in Faiss
Returns: Entity
Return the results in Faiss with key
and score
.
| 4 Commits | ||
---|---|---|---|
|
1.1 KiB
|
3 years ago | |
|
1.3 KiB
|
3 years ago | |
|
87 B
|
3 years ago | |
|
2.0 KiB
|
3 years ago | |
|
22 B
|
3 years ago | |
|
56 KiB
|
3 years ago |