panns
copied
1 changed files with 75 additions and 1 deletions
@ -1,2 +1,76 @@ |
|||
# panns |
|||
# Audio Classification with PANNS |
|||
|
|||
*Author: Jael Gu* |
|||
|
|||
|
|||
## Desription |
|||
|
|||
The audio classification operator classify the given audio data with 527 labels from the large-scale [AudioSet dataset](https://research.google.com/audioset/). |
|||
The pre-trained model used here is from the paper **PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition** ([paper link](https://arxiv.org/abs/1912.10211)). |
|||
|
|||
```python |
|||
import numpy as np |
|||
from towhee import ops |
|||
|
|||
audio_classifier = ops.audio_classification.panns() |
|||
|
|||
# Path or url as input |
|||
tags, audio_embedding = audio_classifier("/audio/path/or/url/") |
|||
|
|||
# Audio data as input |
|||
audio_data = np.zeros((2, 441344)) |
|||
sample_rate = 44100 |
|||
tags, audio_embedding = audio_classifier(audio_data, sample_rate) |
|||
``` |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***ops.audio_classification.panns()*** |
|||
|
|||
|
|||
## Interface |
|||
|
|||
Given an audio (file path, link, or waveform), |
|||
the audio classification operator generates a list of labels |
|||
and a vector in numpy.ndarray. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
None. |
|||
|
|||
|
|||
**Returns**: *numpy.ndarray* |
|||
|
|||
labels [(tag, score)], audio embedding in shape (2048,). |
|||
|
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Generate embeddings for the audio "test.wav". |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
from towhee import dc |
|||
|
|||
dc.glob('test.wav') |
|||
.audio_classification.panns() |
|||
.show() |
|||
``` |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
from towhee import dc |
|||
|
|||
dc.glob['path']('test.wav') |
|||
.audio_classification.panns['path', 'vecs']() |
|||
.select('vecs') |
|||
.show() |
|||
``` |
|||
|
|||
|
|||
|
Loading…
Reference in new issue