|
|
@ -15,33 +15,19 @@ The pre-trained model used here is from the paper **PANNs: Large-Scale Pretraine |
|
|
|
|
|
|
|
Predict labels and generate embeddings given the audio path "test.wav". |
|
|
|
|
|
|
|
*Write the pipeline in simplified style*: |
|
|
|
*Write a pipeline with explicit inputs/outputs name specifications:* |
|
|
|
|
|
|
|
```python |
|
|
|
import towhee |
|
|
|
|
|
|
|
( |
|
|
|
towhee.glob('test.wav') |
|
|
|
.audio_decode.ffmpeg() |
|
|
|
.runas_op(func=lambda x:[y[0] for y in x]) |
|
|
|
.audio_classification.panns() |
|
|
|
.show() |
|
|
|
) |
|
|
|
``` |
|
|
|
|
|
|
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|
|
|
from towhee.dc2 import pipe, ops, DataCollection |
|
|
|
|
|
|
|
```python |
|
|
|
import towhee |
|
|
|
|
|
|
|
( |
|
|
|
towhee.glob['path']('test.wav') |
|
|
|
.audio_decode.ffmpeg['path', 'frames']() |
|
|
|
.runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x]) |
|
|
|
.audio_classification.panns['frames', ('labels', 'scores', 'vec')]() |
|
|
|
.select['path', 'labels', 'scores', 'vec']() |
|
|
|
.show() |
|
|
|
p = ( |
|
|
|
pipe.input('path') |
|
|
|
.map('path', 'frame', ops.audio_decode.ffmpeg()) |
|
|
|
.map('frame', ('labels', 'scores', 'vec'), ops.audio_classification.panns()) |
|
|
|
.output('path', 'labels', 'scores', 'vec') |
|
|
|
) |
|
|
|
|
|
|
|
DataCollection(p('./test.wav')).show() |
|
|
|
``` |
|
|
|
<img src="./result.png" width="800px"/> |
|
|
|
|
|
|
|