|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import logging
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torchaudio
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
from towhee.operator import NNOperator
|
|
|
|
from towhee import register
|
|
|
|
from towhee.types.audio_frame import AudioFrame
|
|
|
|
|
|
|
|
sys.path.append(str(Path(__file__).parent))
|
|
|
|
from clmr_checkpoint import load_encoder_checkpoint
|
|
|
|
from sample_cnn import SampleCNN
|
|
|
|
|
|
|
|
log = logging.getLogger()
|
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vecs'])
|
|
|
|
class ClmrMagnatagatune(NNOperator):
|
|
|
|
"""
|
|
|
|
Pretrained clmr
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, framework="pytorch") -> None:
|
|
|
|
super().__init__(framework=framework)
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
weight_path = os.path.join(str(Path(__file__).parent),
|
|
|
|
'clmr_checkpoint_10000.pt')
|
|
|
|
state_dict = load_encoder_checkpoint(weight_path, 1)
|
|
|
|
encoder = SampleCNN(strides=[3, 3, 3, 3, 3, 3, 3, 3, 3], supervised=False, out_dim=1)
|
|
|
|
encoder.load_state_dict(state_dict)
|
|
|
|
|
|
|
|
new_encoder = torch.nn.Sequential(*(list(encoder.children())[:-1]))
|
|
|
|
x = list(new_encoder[0][:10].children())
|
|
|
|
y = torch.nn.Sequential(*list(new_encoder[0][10].children())[:-1])
|
|
|
|
x.append(y)
|
|
|
|
self.model = torch.nn.Sequential(*x)
|
|
|
|
self.model.eval()
|
|
|
|
self.model.to(self.device)
|
|
|
|
|
|
|
|
def __call__(self, data: List[AudioFrame]) -> numpy.ndarray:
|
|
|
|
audio_tensors = self.preprocess(data).to(self.device)
|
|
|
|
features = self.model(audio_tensors)
|
|
|
|
outs = features.to("cpu")
|
|
|
|
return outs.detach().numpy()
|
|
|
|
|
|
|
|
def __call__(self, data: List[AudioFrame]) -> numpy.ndarray:
|
|
|
|
_sr = 22050
|
|
|
|
audio_length = 59049
|
|
|
|
|
|
|
|
sr = data[0].sample_rate
|
|
|
|
layout = data[0].layout
|
|
|
|
if layout == 'stereo':
|
|
|
|
frames = [frame.reshape(-1, 2) for frame in data]
|
|
|
|
audio = numpy.vstack(frames)
|
|
|
|
audio = numpy.mean(audio, axis=1)
|
|
|
|
else:
|
|
|
|
audio = numpy.hstack(data)
|
|
|
|
if len(audio.shape) != 1:
|
|
|
|
audio = audio.squeeze()
|
|
|
|
audio = self.int2float(audio, dtype='float32')
|
|
|
|
audio = torch.from_numpy(audio)
|
|
|
|
|
|
|
|
if sr != _sr:
|
|
|
|
resampler = torchaudio.transforms.Resample(sr, _sr, dtype=audio.dtype)
|
|
|
|
audio = resampler(audio)
|
|
|
|
with torch.no_grad():
|
|
|
|
batch = torch.split(audio, audio_length)
|
|
|
|
batch = [x for x in batch if len(x) == audio_length]
|
|
|
|
batch = torch.vstack(batch)
|
|
|
|
batch = batch.unsqueeze(dim=1).to(self.device)
|
|
|
|
features = numpy.squeeze(self.model(batch))
|
|
|
|
|
|
|
|
return features.to('cpu').detach().numpy()
|
|
|
|
|
|
|
|
def int2float(self, wav: numpy.ndarray, dtype: str = 'float64'):
|
|
|
|
"""
|
|
|
|
Convert audio data from int to float.
|
|
|
|
The input dtype must be integers.
|
|
|
|
The output dtype is controlled by the parameter `dtype`, defaults to 'float64'.
|
|
|
|
|
|
|
|
The code is inspired by https://github.com/mgeier/python-audio/blob/master/audio-files/utility.py
|
|
|
|
"""
|
|
|
|
dtype = numpy.dtype(dtype)
|
|
|
|
assert dtype.kind == 'f'
|
|
|
|
if wav.dtype.kind in 'iu':
|
|
|
|
# ii = numpy.iinfo(wav.dtype)
|
|
|
|
# abs_max = 2 ** (ii.bits - 1)
|
|
|
|
# offset = ii.min + abs_max
|
|
|
|
# return (wav.astype(dtype) - offset) / abs_max
|
|
|
|
if wav.dtype != 'int16':
|
|
|
|
wav = (wav >> 16).astype(numpy.int16)
|
|
|
|
assert wav.dtype == 'int16'
|
|
|
|
wav = (wav / 32768.0).astype(dtype)
|
|
|
|
return wav
|
|
|
|
else:
|
|
|
|
return wav.astype(dtype)
|
|
|
|
|
|
|
|
|
|
|
|
# if __name__ == "__main__":
|
|
|
|
# import towhee
|
|
|
|
#
|
|
|
|
# audio_path = "path/to/audio.wav"
|
|
|
|
# frames = towhee.glob(audio_path).audio_decode.ffmpeg(99999).flatten()[0]
|
|
|
|
#
|
|
|
|
# encoder = ClmrMagnatagatune()
|
|
|
|
# vec = encoder(frames)
|
|
|
|
#
|
|
|
|
# print(vec.shape)
|