logo
Browse Source

Update

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 3 years ago
parent
commit
5d3f8c394c
  1. 34
      README.md
  2. 72
      clmr_magnatagatune.py
  3. 29
      clmr_model.py
  4. 15
      sample_cnn.py

34
README.md

@ -1,10 +1,10 @@
# Audio Embedding with CLMR
*Author: Jael Gu*
*Author: [Jael Gu](https://github.com/jaelgu)*
<br />
## Desription
## Description
The audio embedding operator converts an input audio into a dense vector which can be used to represent the audio clip's semantics.
Each vector represents for an audio clip with a fixed length of around 2s.
@ -22,11 +22,13 @@ Generate embeddings for the audio "test.wav".
```python
import towhee
towhee.glob('test.wav') \
.audio_decode() \
.time_window(range=10) \
.audio_embedding.clmr() \
(
towhee.glob('test.wav')
.audio_decode.ffmpeg()
.runas_op(func=lambda x:[y[0] for y in x])
.audio_embedding.clmr()
.show()
)
```
| [-2.1045141, 0.55381, 0.4537212, ...] shape=(6, 512) |
@ -35,12 +37,13 @@ towhee.glob('test.wav') \
```python
import towhee
towhee.glob['path']('test.wav') \
.audio_decode['path', 'audio']() \
.time_window['audio', 'frames'](range=10) \
.audio_embedding.clmr['frames', 'vecs']() \
.select('vecs') \
.to_vec()
(
towhee.glob['path']('test.wav')
.audio_decode.ffmpeg['path', 'frames']()
.runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x])
.audio_embedding.clmr['frames', 'vecs']()
.show()
)
```
[array([[-2.1045141 , 0.55381 , 0.4537212 , ..., 0.18805158,
0.3079657 , -1.216063 ],
@ -74,14 +77,13 @@ Default value is "pytorch" since the model is implemented in Pytorch.
## Interface
An audio embedding operator generates vectors in numpy.ndarray given an audio file path or a [towhee audio](link/to/AudioFrame/api/doc).
An audio embedding operator generates vectors in numpy.ndarray given towhee audio frames.
**Parameters:**
*Union[str, towhee.types.Audio (a sub-class of numpy.ndarray]*
*data: List[towhee.types.audio_frame.AudioFrame]*
The audio path or link in string.
Or audio input data in towhee audio frames.
Input audio data is a list of towhee audio frames.
The input data should represent for an audio longer than 2s.
**Returns**:

72
clmr_magnatagatune.py

@ -11,19 +11,34 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import logging
from pathlib import Path
from typing import Union
from typing import List
import torchaudio
import resampy
import torch
import numpy
from towhee.operator import NNOperator
from towhee import register
from towhee.types.audio_frame import AudioFrame
sys.path.append(str(Path(__file__).parent))
from clmr_checkpoint import load_encoder_checkpoint
@ -56,30 +71,57 @@ class ClmrMagnatagatune(NNOperator):
self.model.eval()
self.model.to(self.device)
def __call__(self, audio: Union[str, numpy.ndarray], sample_rate: int = None) -> numpy.ndarray:
def __call__(self, data: List[AudioFrame]) -> numpy.ndarray:
audio_tensors = self.preprocess(data).to(self.device)
features = self.model(audio_tensors)
outs = features.to("cpu")
return outs.detach().numpy()
def __call__(self, data: List[AudioFrame]) -> numpy.ndarray:
_sr = 22050
audio_length = 59049
if isinstance(audio, str):
source = os.path.abspath(audio)
audio, sr = torchaudio.load(source)
elif isinstance(audio, numpy.ndarray):
sr = sample_rate
audio = torch.tensor(audio).to(torch.float32)
sr = data[0].sample_rate
layout = data[0].layout
if layout == 'stereo':
frames = [frame.reshape(-1, 2) for frame in data]
audio = numpy.vstack(frames).transpose()
# audio = numpy.mean(audio, axis=0)
# audio = numpy.expand_dims(audio, 0)
else:
audio = numpy.hstack(data)
audio = numpy.expand_dims(audio, 0)
audio = self.int2float(audio).astype('float32')
if sr != _sr:
transform = torchaudio.transforms.Resample(orig_freq=sr, new_freq=_sr)
audio = transform(audio)
audio = resampy.resample(audio, sr, _sr)
with torch.no_grad():
audio = torch.from_numpy(audio)
batch = torch.split(audio, audio_length, dim=1)
batch = torch.cat(batch[:-1])
batch = batch.unsqueeze(dim=1)
batch = batch.to(self.device)
features = numpy.squeeze(self.model(batch))
embeddings = features.to("cpu")
return embeddings.detach().numpy()
return features.to('cpu').detach().numpy()
def int2float(self, wav: numpy.ndarray, dtype: str = 'float64'):
"""
Convert audio data from int to float.
The input dtype must be integers.
The output dtype is controlled by the parameter `dtype`, defaults to 'float64'.
The code is inspired by https://github.com/mgeier/python-audio/blob/master/audio-files/utility.py
"""
dtype = numpy.dtype(dtype)
assert dtype.kind == 'f'
if wav.dtype.kind in 'iu':
ii = numpy.iinfo(wav.dtype)
abs_max = 2 ** (ii.bits - 1)
offset = ii.min + abs_max
return (wav.astype(dtype) - offset) / abs_max
else:
return wav.astype(dtype)
# if __name__ == "__main__":

29
clmr_model.py

@ -1,5 +1,20 @@
import torch.nn as nn
import numpy as np
# Original implementation by https://github.com/Spijkervet/CLMR
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torch import nn
class Model(nn.Module):
@ -7,17 +22,9 @@ class Model(nn.Module):
super(Model, self).__init__()
def initialize(self, m):
if isinstance(m, (nn.Conv1d)):
if isinstance(m, nn.Conv1d):
# nn.init.xavier_uniform_(m.weight)
# if m.bias is not None:
# nn.init.xavier_uniform_(m.bias)
nn.init.kaiming_uniform_(m.weight, mode="fan_in", nonlinearity="relu")
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x

15
sample_cnn.py

@ -1,3 +1,18 @@
# Original implementation by https://github.com/Spijkervet/CLMR
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from torch import nn
from clmr_model import Model

Loading…
Cancel
Save