# Audio Embedding with data2vec
*author: David Wang*
< br / >
## Description
This operator extracts features for audio with [data2vec ](https://arxiv.org/abs/2202.03555 ). The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture.
< br / >
## Code Example
Generate embeddings for the audio "test.wav".
*Write the pipeline in simplified style* :
```python
import towhee
(
towhee.glob('test.wav')
.audio_decode.ffmpeg()
.runas_op(func=lambda x:[y[0] for y in x])
.audio_embedding.data2vec()
.show()
)
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
(
towhee.glob['path']('test.wav')
.audio_decode.ffmpeg['path', 'frames']()
.runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x])
.audio_embedding.data2vec['frames', 'vecs'](model_name="facebook/data2vec-audio-base-960h")
.select['path', 'vecs']()
.show()
)
```
< br / >
## Factory Constructor
Create the operator via the following factory method
***data2vec(model_name='facebook/data2vec-audio-base')***
**Parameters:**
** *model_name***: *str*
The model name in string.
The default value is "facebook/data2vec-audio-base-960h".
Supported model name:
-
- facebook/data2vec-audio-base-960h
- facebook/data2vec-audio-large-960h
- facebook/data2vec-audio-base
- facebook/data2vec-audio-base-100h
- facebook/data2vec-audio-base-10m
- facebook/data2vec-audio-large
- facebook/data2vec-audio-large-100h
- facebook/data2vec-audio-large-10m
< br / >
## Interface
An audio embedding operator generates vectors in numpy.ndarray given an audio file path or towhee audio frames.
**Parameters:**
** *data:*** *List[towhee.types.audio_frame.AudioFrame]*
Input audio data is a list of towhee audio frames. The input data should represent for an audio longer than 0.9s.
**Returns:** *numpy.ndarray*
The audio embedding extracted by model.