data2vec
copied
wxywb
3 years ago
2 changed files with 57 additions and 0 deletions
@ -0,0 +1,18 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from .data2vec_audio import Data2VecAudio |
||||
|
|
||||
|
def data2vec_audio(model_name="facebook/data2vec-audio-base-960h"): |
||||
|
return Data2VecAudio(model_name) |
@ -0,0 +1,39 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
import numpy |
||||
|
import torch |
||||
|
import towhee |
||||
|
|
||||
|
from PIL import Image as PILImage |
||||
|
|
||||
|
from transformers import BeitFeatureExtractor, Data2VecVisionForImageClassification |
||||
|
from towhee.operator.base import NNOperator |
||||
|
|
||||
|
class Data2VecAudio(NNOperator): |
||||
|
def __init__(self, model_name = "facebook/data2vec-audio-base-960h"): |
||||
|
self.model = Data2VecAudioModel.from_pretrained("facebook/data2vec-audio-base-960h") |
||||
|
self.processor = Wav2Vec2Processor.from_pretrained("facebook/data2vec-audio-base-960h") |
||||
|
|
||||
|
def __call__(self, data): |
||||
|
audio = np.hstack(data).reshape(1, -1) |
||||
|
audio = audio.astype(np.float32, order='C') / 32768.0 |
||||
|
inputs = processor(audio, sampling_rate=sampling_rate, return_tensors="pt") |
||||
|
with torch.no_grad(): |
||||
|
outputs = model(**inputs) |
||||
|
last_hidden_states = outputs.last_hidden_state |
||||
|
return last_hidden_states |
||||
|
|
||||
|
|
||||
|
|
||||
|
|
Loading…
Reference in new issue