data2vec
copied
wxywb
3 years ago
2 changed files with 109 additions and 10 deletions
@ -1,2 +1,103 @@ |
|||||
# data2vec-audio |
|
||||
|
# Audio Embdding with data2vec |
||||
|
|
||||
|
*author: David Wang* |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
This operator extracts features for audio with [data2vec](https://arxiv.org/abs/2202.03555). The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Generate embeddings for the audio "test.wav". |
||||
|
|
||||
|
|
||||
|
*Write the pipeline in simplified style*: |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
( |
||||
|
towhee.glob('test.wav') |
||||
|
.audio_decode.ffmpeg() |
||||
|
.runas_op(func=lambda x:[y[0] for y in x]) |
||||
|
.towhee.data2vec_audio() |
||||
|
.show() |
||||
|
) |
||||
|
|
||||
|
``` |
||||
|
<img src="https://towhee.io/towhee/data2vec-vision/raw/branch/main/result1.png" alt="result1" style="height:20px;"/> |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
( |
||||
|
towhee.glob['path']('test.wav') |
||||
|
.audio_decode.ffmpeg['path', 'frames']() |
||||
|
.runas_op['frames', 'frames'](func=lambda x:[y[0] for y in x]) |
||||
|
.towhee.data2vec_audio['frames', 'vecs'](model_name="facebook/data2vec-audio-base-960h") |
||||
|
.show() |
||||
|
) |
||||
|
``` |
||||
|
<img src="https://towhee.io/towhee/data2vec-vision/raw/branch/main/result2.png" alt="result2" style="height:60px;"/> |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***data2vec_vision(model_name='facebook/data2vec-vision-base')*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
|
||||
|
***model_name***: *str* |
||||
|
|
||||
|
The model name in string. |
||||
|
The default value is "facebook/data2vec-audio-base-960h". |
||||
|
|
||||
|
Supported model name: |
||||
|
- |
||||
|
- facebook/data2vec-audio-base-960h |
||||
|
- facebook/data2vec-audio-large-960h |
||||
|
- facebook/data2vec-audio-base |
||||
|
- facebook/data2vec-audio-base-100h |
||||
|
- facebook/data2vec-audio-base-10m |
||||
|
- facebook/data2vec-audio-large |
||||
|
- facebook/data2vec-audio-large-100h |
||||
|
- facebook/data2vec-audio-large-10m |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
An audio embedding operator generates vectors in numpy.ndarray given an audio file path or towhee audio frames. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***data:*** *List[towhee.types.audio_frame.AudioFrame]* |
||||
|
|
||||
|
Input audio data is a list of towhee audio frames. The input data should represent for an audio longer than 0.9s. |
||||
|
|
||||
|
**Returns:** *numpy.ndarray* |
||||
|
|
||||
|
The audio embedding extracted by model. |
||||
|
|
||||
|
|
||||
|
|
||||
|
Loading…
Reference in new issue