|
@ -28,6 +28,7 @@ from towhee import register |
|
|
from towhee.types.audio_frame import AudioFrame |
|
|
from towhee.types.audio_frame import AudioFrame |
|
|
from towhee.models.nnfp import NNFp |
|
|
from towhee.models.nnfp import NNFp |
|
|
from towhee.models.utils.audio_preprocess import preprocess_wav, MelSpec |
|
|
from towhee.models.utils.audio_preprocess import preprocess_wav, MelSpec |
|
|
|
|
|
# from towhee.dc2 import accelerate |
|
|
|
|
|
|
|
|
from .configs import default_params, hop25_params, distill_params |
|
|
from .configs import default_params, hop25_params, distill_params |
|
|
|
|
|
|
|
@ -35,23 +36,11 @@ warnings.filterwarnings('ignore') |
|
|
log = logging.getLogger('nnfp_op') |
|
|
log = logging.getLogger('nnfp_op') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# @accelerate |
|
|
class Model: |
|
|
class Model: |
|
|
def __init__(self, model_name, device='cpu', model_path=None): |
|
|
|
|
|
|
|
|
def __init__(self, params, device='cpu', model_path=None): |
|
|
self.device = device |
|
|
self.device = device |
|
|
if model_name == 'nnfp_default': |
|
|
|
|
|
self.params = default_params |
|
|
|
|
|
elif model_name == 'nnfp_hop25': |
|
|
|
|
|
self.params = hop25_params |
|
|
|
|
|
elif model_name == 'nnfp_distill': |
|
|
|
|
|
self.params == distill_params |
|
|
|
|
|
else: |
|
|
|
|
|
raise ValueError('Invalid model name. Accept value from ["nnfp_default", "nnfp_hop25", "nnfp_distill"]') |
|
|
|
|
|
|
|
|
|
|
|
log.info('Loading model...') |
|
|
log.info('Loading model...') |
|
|
if model_path is None: |
|
|
|
|
|
path = str(Path(__file__).parent) |
|
|
|
|
|
model_path = os.path.join(path, 'saved_model', 'nnfp_fma.pt') |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
|
try: |
|
|
state_dict = torch.jit.load(model_path, map_location=self.device) |
|
|
state_dict = torch.jit.load(model_path, map_location=self.device) |
|
|
except Exception: |
|
|
except Exception: |
|
@ -59,18 +48,18 @@ class Model: |
|
|
if isinstance(state_dict, torch.nn.Module): |
|
|
if isinstance(state_dict, torch.nn.Module): |
|
|
self.model = state_dict |
|
|
self.model = state_dict |
|
|
else: |
|
|
else: |
|
|
dim = self.params['dim'] |
|
|
|
|
|
h = self.params['h'] |
|
|
|
|
|
u = self.params['u'] |
|
|
|
|
|
f_bin = self.params['n_mels'] |
|
|
|
|
|
n_seg = int(self.params['segment_size'] * self.params['sample_rate']) |
|
|
|
|
|
t = (n_seg + self.params['hop_length'] - 1) // self.params['hop_length'] |
|
|
|
|
|
|
|
|
dim = params['dim'] |
|
|
|
|
|
h = params['h'] |
|
|
|
|
|
u = params['u'] |
|
|
|
|
|
f_bin = params['n_mels'] |
|
|
|
|
|
n_seg = int(params['segment_size'] * params['sample_rate']) |
|
|
|
|
|
t = (n_seg + params['hop_length'] - 1) // params['hop_length'] |
|
|
log.info('Creating model with parameters...') |
|
|
log.info('Creating model with parameters...') |
|
|
self.model = NNFp( |
|
|
self.model = NNFp( |
|
|
dim=dim, h=h, u=u, |
|
|
dim=dim, h=h, u=u, |
|
|
in_f=f_bin, in_t=t, |
|
|
in_f=f_bin, in_t=t, |
|
|
fuller=self.params['fuller'], |
|
|
|
|
|
activation=self.params['activation'] |
|
|
|
|
|
|
|
|
fuller=params['fuller'], |
|
|
|
|
|
activation=params['activation'] |
|
|
).to(self.device) |
|
|
).to(self.device) |
|
|
self.model.load_state_dict(state_dict) |
|
|
self.model.load_state_dict(state_dict) |
|
|
self.model.eval() |
|
|
self.model.eval() |
|
@ -96,19 +85,34 @@ class NNFingerprint(NNOperator): |
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
self.device = device |
|
|
self.device = device |
|
|
self.model_name = model_name |
|
|
self.model_name = model_name |
|
|
self.accelerate_model = Model(model_name=model_name, device=self.device, model_path=model_path) |
|
|
|
|
|
self.model = self.accelerate_model.model |
|
|
|
|
|
self.params = self.accelerate_model.params |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if model_name == 'nnfp_default': |
|
|
|
|
|
self.params = default_params |
|
|
|
|
|
elif model_name == 'nnfp_hop25': |
|
|
|
|
|
self.params = hop25_params |
|
|
|
|
|
elif model_name == 'nnfp_distill': |
|
|
|
|
|
self.params == distill_params |
|
|
|
|
|
else: |
|
|
|
|
|
raise ValueError('Invalid model name. Accept value from ["nnfp_default", "nnfp_hop25", "nnfp_distill"]') |
|
|
|
|
|
|
|
|
|
|
|
if model_path is None: |
|
|
|
|
|
path = str(Path(__file__).parent) |
|
|
|
|
|
model_path = os.path.join(path, 'saved_model', 'nnfp_fma.pt') |
|
|
|
|
|
self.model = Model(params=self.params, device=self.device, model_path=model_path) |
|
|
|
|
|
|
|
|
def __call__(self, data: Union[str, List[AudioFrame]]) -> numpy.ndarray: |
|
|
def __call__(self, data: Union[str, List[AudioFrame]]) -> numpy.ndarray: |
|
|
audio_tensors = self.preprocess(data) |
|
|
audio_tensors = self.preprocess(data) |
|
|
if audio_tensors.device != self.device: |
|
|
if audio_tensors.device != self.device: |
|
|
audio_tensors = audio_tensors.to(self.device) |
|
|
audio_tensors = audio_tensors.to(self.device) |
|
|
# print(audio_tensors.shape) |
|
|
# print(audio_tensors.shape) |
|
|
features = self.accelerate_model(audio_tensors) |
|
|
|
|
|
|
|
|
features = self.model(audio_tensors) |
|
|
outs = features.detach().cpu().numpy() |
|
|
outs = features.detach().cpu().numpy() |
|
|
return outs |
|
|
return outs |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
|
def _model(self): |
|
|
|
|
|
return self.model.model |
|
|
|
|
|
|
|
|
def preprocess(self, frames: Union[str, List[AudioFrame]]): |
|
|
def preprocess(self, frames: Union[str, List[AudioFrame]]): |
|
|
if isinstance(frames, str): |
|
|
if isinstance(frames, str): |
|
|
audio, sr = torchaudio.load(frames) |
|
|
audio, sr = torchaudio.load(frames) |
|
@ -176,6 +180,10 @@ class NNFingerprint(NNOperator): |
|
|
log.warning('Converting float dtype from %s to %s.', wav.dtype, dtype) |
|
|
log.warning('Converting float dtype from %s to %s.', wav.dtype, dtype) |
|
|
return wav.astype(dtype) |
|
|
return wav.astype(dtype) |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
|
|
|
|
def supported_formats(self): |
|
|
|
|
|
return ['onnx'] |
|
|
|
|
|
|
|
|
def save_model(self, format: str = 'pytorch', path: str = 'default'): |
|
|
def save_model(self, format: str = 'pytorch', path: str = 'default'): |
|
|
if path == 'default': |
|
|
if path == 'default': |
|
|
path = str(Path(__file__).parent) |
|
|
path = str(Path(__file__).parent) |
|
@ -183,30 +191,33 @@ class NNFingerprint(NNOperator): |
|
|
os.makedirs(path, exist_ok=True) |
|
|
os.makedirs(path, exist_ok=True) |
|
|
name = self.model_name.replace('/', '-') |
|
|
name = self.model_name.replace('/', '-') |
|
|
path = os.path.join(path, name) |
|
|
path = os.path.join(path, name) |
|
|
|
|
|
if format in ['torchscript', 'pytorch']: |
|
|
|
|
|
path = path + '.pt' |
|
|
|
|
|
elif format == 'onnx': |
|
|
|
|
|
path = path + '.onnx' |
|
|
|
|
|
else: |
|
|
|
|
|
raise ValueError(f'Invalid format {format}.') |
|
|
dummy_input = torch.rand( |
|
|
dummy_input = torch.rand( |
|
|
(1,) + (self.params['n_mels'], self.params['u']) |
|
|
(1,) + (self.params['n_mels'], self.params['u']) |
|
|
).to(self.device) |
|
|
).to(self.device) |
|
|
if format == 'pytorch': |
|
|
if format == 'pytorch': |
|
|
path = path + '.pt' |
|
|
|
|
|
torch.save(self.model, path) |
|
|
|
|
|
|
|
|
torch.save(self._model, path) |
|
|
elif format == 'torchscript': |
|
|
elif format == 'torchscript': |
|
|
path = path + '.pt' |
|
|
|
|
|
try: |
|
|
try: |
|
|
try: |
|
|
try: |
|
|
jit_model = torch.jit.script(self.model) |
|
|
|
|
|
|
|
|
jit_model = torch.jit.script(self._model) |
|
|
except Exception: |
|
|
except Exception: |
|
|
log.warning( |
|
|
log.warning( |
|
|
'Failed to directly export as torchscript.' |
|
|
'Failed to directly export as torchscript.' |
|
|
'Using dummy input in shape of %s now.', dummy_input.shape) |
|
|
'Using dummy input in shape of %s now.', dummy_input.shape) |
|
|
jit_model = torch.jit.trace(self.model, dummy_input, strict=False) |
|
|
|
|
|
|
|
|
jit_model = torch.jit.trace(self._model, dummy_input, strict=False) |
|
|
torch.jit.save(jit_model, path) |
|
|
torch.jit.save(jit_model, path) |
|
|
except Exception as e: |
|
|
except Exception as e: |
|
|
log.error('Fail to save as torchscript: %s.', e) |
|
|
log.error('Fail to save as torchscript: %s.', e) |
|
|
raise RuntimeError(f'Fail to save as torchscript: {e}.') |
|
|
raise RuntimeError(f'Fail to save as torchscript: {e}.') |
|
|
elif format == 'onnx': |
|
|
elif format == 'onnx': |
|
|
path = path + '.onnx' |
|
|
|
|
|
try: |
|
|
try: |
|
|
torch.onnx.export(self.model, |
|
|
|
|
|
|
|
|
torch.onnx.export(self._model, |
|
|
dummy_input, |
|
|
dummy_input, |
|
|
path, |
|
|
path, |
|
|
input_names=['input'], |
|
|
input_names=['input'], |
|
@ -223,3 +234,4 @@ class NNFingerprint(NNOperator): |
|
|
# todo: elif format == 'tensorrt': |
|
|
# todo: elif format == 'tensorrt': |
|
|
else: |
|
|
else: |
|
|
log.error(f'Unsupported format "{format}".') |
|
|
log.error(f'Unsupported format "{format}".') |
|
|
|
|
|
return Path(path).resolve() |
|
|