The audio embedding operator converts an input audio into a dense vector which can be used to represent the audio clip's semantics.
This operator is built on top of the VGGish model with Pytorch.
It is originally implemented in [Tensorflow](https://github.com/tensorflow/models/tree/master/research/audioset/vggish).
The model is pre-trained with a large scale of audio dataset [AudioSet](https://research.google.com/audioset).
This operator is built on top of [VGGish](https://github.com/tensorflow/models/tree/master/research/audioset/vggish) with Pytorch.
The model is a [VGG](https://arxiv.org/abs/1409.1556) variant pre-trained with a large scale of audio dataset [AudioSet](https://research.google.com/audioset).
As suggested, it is suitable to extract features at high level or warm up a larger model.