# Inception-ResNet v1 Face Embedding Operator
*author: David Wang*
< br / >
## Description
This operator extracts embedding vector from facial image using [Inception-ResNet ](https://arxiv.org/pdf/1602.07261.pdf ). The implementation is an adaptation from [timesler/facenet-pytorch ](https://github.com/timesler/facenet-pytorch ).
< br / >
## Code Example
Extract face image embedding from './img.png'.
*Write a pipeline with explicit inputs/outputs name specifications:*
```python
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('path')
.map('path', 'img', ops.image_decode())
.map('img', 'vec', ops.face_embedding.inceptionresnetv1())
.output('img', 'vec')
)
DataCollection(p('img.png')).show()
```
< img src = "https://towhee.io/face-embedding/inceptionresnetv1/raw/branch/main/result.png" alt = "result" style = "height:60px;" / >
< br / >
## Factory Constructor
Create the operator via the following factory method:
***face_embedding.inceptionresnetv1(image_size = 160)***
**Parameters:**
***image_size:*** *int*
Scaled input image size to extract embedding. The higher resolution would generate the more discriminative feature but cost more time to calculate.
supported types: `int` , default is 160.
< br / >
## Interface
A face embedding operator takes a face image as input. It extracts the embedding in ndarray.
**Parameters:**
** *img:*** *towhee.types.Image (a sub-class of numpy.ndarray)*
The input image.
**Returns:** *numpy.ndarray*
The extracted image embedding.