logo
Browse Source

update the readme.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 3 years ago
parent
commit
597e959f1c
  1. 44
      README.md
  2. 4
      __init__.py
  3. 4
      mobilefacenet.py
  4. BIN
      result.png

44
README.md

@ -1,72 +1,68 @@
# Mobilefacenet Face Landmark Detecter
# MobileFaceNet Face Landmark Detecter
*authors: David Wang*
## Desription
A class of extremely efficient CNN models to extract 68 landmarks from a facial image[MobileFaceNets](https://arxiv.org/pdf/1804.07573.pdf).
[MobileFaceNets](https://arxiv.org/pdf/1804.07573) is a class of extremely efficient CNN models to extract 68 landmarks from a facial image, which use less than 1 million parameters and are specifically tailored for high-accuracy real-time face verification on mobile and embedded devices. This repo is an adaptation from [cuijian/pytorch_face_landmark](https://github.com/cunjian/pytorch_face_landmark).
## Code Example
extracted facial landmark from './img1.jpg'.
Extract facial landmarks from './img1.jpg'.
*Write the pipeline in simplified style*:
```python
from towhee import dc
import towhee
dc.glob('./img1.jpg') \
towhee.glob('./img1.jpg') \
.image_decode.cv2() \
.face_landmark_detection.mobilefacenet() \
.select('img','landmark') \
.to_list()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
from towhee import dc
import towhee
dc.glob['path']('./img1.jpg') \
towhee.glob['path']('./img1.jpg') \
.image_decode.cv2['path', 'img']() \
.face_landmark_detection.mobilefacenet() \
.to_list()
.face_landmark_detection.mobilefacenet['img', 'landmark']() \
.select('img','landmark') \
.show()
```
<img src="https://towhee.io/face-landmark-detection/mobilefacenet/raw/branch/main/result.png" alt="result1" style="height:20px;"/>
## Factory Constructor
Create the operator via the following factory method
***ops.face_landmark_detection.mobilefacenet(pretrained = True)***
***face_landmark_detection.mobilefacenet(pretrained = True)***
**Parameters:**
***pretrained***
​ whether load the pretrained weights..
​ whether load the pretrained weights.
​ supported types: `bool`, default is True, using pretrained weights
​ supported types: `bool`, default is True, using pretrained weights.
## Interface
An image embedding operator takes an image as input. it extracts the embedding back to ndarray.
**Args:**
***pretrained***
​ whether load the pretrained weights..
​ supported types: `bool`, default is True, using pretrained weights
**Parameters:**
***image***: *np.ndarray*
***img***: *towhee.types.Image (a sub-class of numpy.ndarray)*
​ The input image.
**Returns:**: *numpy.ndarray*
**Returns:** *numpy.ndarray*
​ The extracted facial landmark.
​ The extracted facial landmarks.

4
__init__.py

@ -14,6 +14,6 @@
from .mobilefacenet import Mobilefacenet
def mobilefacenet():
return Mobilefacenet()
def mobilefacenet(pretrained = True):
return Mobilefacenet(pretrained)

4
mobilefacenet.py

@ -54,8 +54,8 @@ class Mobilefacenet(NNOperator):
normalize])
@arg(1, to_image_color('RGB') )
def __call__(self, image: Image):
image = to_pil(image)
def __call__(self, img: Image):
image = to_pil(img)
h, w = image.size
tensor = self._preprocess(image)
if len(tensor.shape) == 3:

BIN
result.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 137 KiB

Loading…
Cancel
Save