mobilefacenet
copied
4 changed files with 24 additions and 28 deletions
@ -1,72 +1,68 @@ |
|||
# Mobilefacenet Face Landmark Detecter |
|||
# MobileFaceNet Face Landmark Detecter |
|||
|
|||
*authors: David Wang* |
|||
|
|||
|
|||
## Desription |
|||
|
|||
A class of extremely efficient CNN models to extract 68 landmarks from a facial image[MobileFaceNets](https://arxiv.org/pdf/1804.07573.pdf). |
|||
[MobileFaceNets](https://arxiv.org/pdf/1804.07573) is a class of extremely efficient CNN models to extract 68 landmarks from a facial image, which use less than 1 million parameters and are specifically tailored for high-accuracy real-time face verification on mobile and embedded devices. This repo is an adaptation from [cuijian/pytorch_face_landmark](https://github.com/cunjian/pytorch_face_landmark). |
|||
|
|||
## Code Example |
|||
|
|||
extracted facial landmark from './img1.jpg'. |
|||
Extract facial landmarks from './img1.jpg'. |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
from towhee import dc |
|||
import towhee |
|||
|
|||
dc.glob('./img1.jpg') \ |
|||
towhee.glob('./img1.jpg') \ |
|||
.image_decode.cv2() \ |
|||
.face_landmark_detection.mobilefacenet() \ |
|||
.select('img','landmark') \ |
|||
.to_list() |
|||
``` |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
from towhee import dc |
|||
import towhee |
|||
|
|||
dc.glob['path']('./img1.jpg') \ |
|||
towhee.glob['path']('./img1.jpg') \ |
|||
.image_decode.cv2['path', 'img']() \ |
|||
.face_landmark_detection.mobilefacenet() \ |
|||
.to_list() |
|||
.face_landmark_detection.mobilefacenet['img', 'landmark']() \ |
|||
.select('img','landmark') \ |
|||
.show() |
|||
``` |
|||
|
|||
<img src="https://towhee.io/face-landmark-detection/mobilefacenet/raw/branch/main/result.png" alt="result1" style="height:20px;"/> |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***ops.face_landmark_detection.mobilefacenet(pretrained = True)*** |
|||
***face_landmark_detection.mobilefacenet(pretrained = True)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***pretrained*** |
|||
|
|||
whether load the pretrained weights.. |
|||
whether load the pretrained weights. |
|||
|
|||
supported types: `bool`, default is True, using pretrained weights |
|||
supported types: `bool`, default is True, using pretrained weights. |
|||
|
|||
## Interface |
|||
|
|||
An image embedding operator takes an image as input. it extracts the embedding back to ndarray. |
|||
|
|||
**Args:** |
|||
|
|||
***pretrained*** |
|||
|
|||
whether load the pretrained weights.. |
|||
|
|||
supported types: `bool`, default is True, using pretrained weights |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***image***: *np.ndarray* |
|||
***img***: *towhee.types.Image (a sub-class of numpy.ndarray)* |
|||
|
|||
The input image. |
|||
|
|||
|
|||
**Returns:**: *numpy.ndarray* |
|||
**Returns:** *numpy.ndarray* |
|||
|
|||
The extracted facial landmark. |
|||
The extracted facial landmarks. |
|||
|
|||
|
After Width: | Height: | Size: 137 KiB |
Loading…
Reference in new issue