copied
Readme
Files and versions
Updated 4 years ago
face-landmark-detection
MobileFaceNet Face Landmark Detecter
authors: David Wang
Desription
MobileFaceNets is a class of extremely efficient CNN models to extract 68 landmarks from a facial image, which use less than 1 million parameters and are specifically tailored for high-accuracy real-time face verification on mobile and embedded devices. This repo is an adaptation from cuijian/pytorch_face_landmark.
Code Example
Extract facial landmarks from './img1.jpg'.
Write the pipeline in simplified style:
import towhee
towhee.glob('./img1.jpg') \
  .image_decode.cv2() \
  .face_landmark_detection.mobilefacenet() \
  .select('img','landmark') \
  .to_list()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./img1.jpg') \
  .image_decode.cv2['path', 'img']() \
  .face_landmark_detection.mobilefacenet['img', 'landmark']() \
  .select('img','landmark') \
  .show()
 
Factory Constructor
Create the operator via the following factory method
face_landmark_detection.mobilefacenet(pretrained = True)
Parameters:
 pretrained
 whether load the pretrained weights.
  supported types: bool, default is True, using pretrained weights.
Interface
An image embedding operator takes an image as input. it extracts the embedding back to ndarray.
Parameters:
 img: towhee.types.Image (a sub-class of numpy.ndarray)
 The input image.
Returns: numpy.ndarray
 The extracted facial landmarks.
|  | 4 Commits | ||
|---|---|---|---|
|  | 
												1.1 KiB
											 | 4 years ago | |
|  | 
												1.7 KiB
											 | 4 years ago | |
|  | 
												711 B
											 | 4 years ago | |
|  | 
												2.5 KiB
											 | 4 years ago | |
|  | 
												5.9 KiB
											 | 4 years ago | |
|  | 
												12 MiB
											 | 4 years ago | |
|  | 
												137 KiB
											 | 4 years ago | |
