logo
Browse Source

update the operator.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 3 years ago
parent
commit
6b5f897d7c
  1. 85
      README.md
  2. 19
      __init__.py
  3. 75
      mobilefacenet.py
  4. 154
      mobilefacenet_impl.py
  5. BIN
      mobilefacenet_model_best.pth

85
README.md

@ -1,2 +1,85 @@
# mobilefacenet
# Mobilefacenet Face Landmark Detecter
*authors: David Wang*
## Desription
A class of extremely efficient CNN models to extract 68 landmarks from a facial image[1].
```python
from towhee import ops
model = ops.face_landmark_detection.mobilefacenet()
landmark = model(img)
```
## Factory Constructor
Create the operator via the following factory method
***ops.face_landmark_detection.mobilefacenet()***
## Interface
An image embedding operator takes an image as input. it extracts the embedding back to ndarray.
**Args:**
***framework***
​ the framework of the model
​ supported types: `str`, default is 'pytorch'
***pretrained***
​ whether load the pretrained weights..
​ supported types: `bool`, default is True, using pretrained weights
**Parameters:**
***image***: *towhee._types.Image*
​ The input image.
**Returns:**: *numpy.ndarray*
​ The extracted facial landmark.
## Code Example
extracted facial landmark from './img1.jpg'.
*Write the pipeline in simplified style*:
```python
import towhee.DataCollection as dc
dc.glob('./img1.jpg')
.face_landmark_detection.mobilefacenet()
.to_list()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee.DataCollection as dc
dc.glob['path']('./img1.jpg')
.image_decode.cv2['path', 'img']()
.face_landmark_detection.mobilefacenet()
.to_list()
```
## Reference
[1].https://arxiv.org/pdf/1804.07573.pdf

19
__init__.py

@ -0,0 +1,19 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .mobilefacenet import Mobilefacenet
def mobilefacenet():
return Mobilefacenet()

75
mobilefacenet.py

@ -0,0 +1,75 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# adapted from https://github.com/cunjian/pytorch_face_landmark
import os
import sys
from typing import NamedTuple
from pathlib import Path
import numpy as np
import torch
from torchvision import transforms
from towhee.operator import NNOperator
from towhee.types.image_utils import to_pil
from towhee._types import Image
#import mobilefacenet
@register(output_schema=['landmark'])
class Mobilefacenet(NNOperator):
"""
Mobilefacenet
"""
def __init__(self, framework: str = 'pytorch', pretrained = True):
super().__init__(framework=framework)
sys.path.append(str(Path(__file__).parent))
from mobilefacenet_impl import MobileFaceNet
self.model = MobileFaceNet([112, 112], 136)
if pretrained == True:
map_location = 'cpu'
checkpoint = torch.load(
os.path.dirname(__file__) +'/mobilefacenet_model_best.pth', map_location=map_location)
self.model.load_state_dict(checkpoint['state_dict'])
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.tfms = transforms.Compose([transforms.Scale(112),
transforms.ToTensor(),
normalize])
@arg(1, to_image_color('RGB') )
def __call__(self, image: Image):
image = to_pil(image)
h, w = image.size
tensor = self._preprocess(image)
if len(tensor.shape) == 3:
tensor = torch.unsqueeze(tensor, 0)
self.model.eval()
landmark = self.model(tensor)[0][0]
landmark = landmark.reshape(-1, 2)
landmark[:, 0] = landmark[:, 0] * w
landmark[:, 1] = landmark[:, 1] * h
return np.asarray(landmark.cpu().detach(), dtype=np.int32)
def _preprocess(self, image):
return self.tfms(image)
def _postprocess(self, landmark):
pass
def train(self):
pass

154
mobilefacenet_impl.py

@ -0,0 +1,154 @@
import torch
from torch import nn
################################## Original Arcface Model #############################################################
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
################################## MobileFaceNet #############################################################
class Conv_block(nn.Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
super(Conv_block, self).__init__()
self.conv = nn.Conv2d(in_c, out_channels=out_c, kernel_size=kernel, groups=groups, stride=stride, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(out_c)
self.prelu = nn.PReLU(out_c)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.prelu(x)
return x
class Linear_block(nn.Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1):
super(Linear_block, self).__init__()
self.conv = nn.Conv2d(in_c, out_channels=out_c, kernel_size=kernel, groups=groups, stride=stride, padding=padding, bias=False)
self.bn = nn.BatchNorm2d(out_c)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class Depth_Wise(nn.Module):
def __init__(self, in_c, out_c, residual = False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1):
super(Depth_Wise, self).__init__()
self.conv = Conv_block(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
self.conv_dw = Conv_block(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride)
self.project = Linear_block(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1))
self.residual = residual
def forward(self, x):
if self.residual:
short_cut = x
x = self.conv(x)
x = self.conv_dw(x)
x = self.project(x)
if self.residual:
output = short_cut + x
else:
output = x
return output
class Residual(nn.Module):
def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)):
super(Residual, self).__init__()
modules = []
for _ in range(num_block):
modules.append(Depth_Wise(c, c, residual=True, kernel=kernel, padding=padding, stride=stride, groups=groups))
self.model = nn.Sequential(*modules)
def forward(self, x):
return self.model(x)
class GNAP(nn.Module):
def __init__(self, embedding_size):
super(GNAP, self).__init__()
assert embedding_size == 512
self.bn1 = nn.BatchNorm2d(512, affine=False)
self.pool = nn.AdaptiveAvgPool2d((1, 1))
self.bn2 = nn.BatchNorm1d(512, affine=False)
def forward(self, x):
x = self.bn1(x)
x_norm = torch.norm(x, 2, 1, True)
x_norm_mean = torch.mean(x_norm)
weight = x_norm_mean / x_norm
x = x * weight
x = self.pool(x)
x = x.view(x.shape[0], -1)
feature = self.bn2(x)
return feature
class GDC(nn.Module):
def __init__(self, embedding_size):
super(GDC, self).__init__()
self.conv_6_dw = Linear_block(512, 512, groups=512, kernel=(7,7), stride=(1, 1), padding=(0, 0))
self.conv_6_flatten = nn.Flatten()
self.linear = nn.Linear(512, embedding_size, bias=False)
#self.bn = BatchNorm1d(embedding_size, affine=False)
self.bn = nn.BatchNorm1d(embedding_size)
def forward(self, x):
x = self.conv_6_dw(x)
x = self.conv_6_flatten(x)
x = self.linear(x)
x = self.bn(x)
return x
class MobileFaceNet(nn.Module):
def __init__(self, input_size, embedding_size = 512, output_name = "GDC"):
super(MobileFaceNet, self).__init__()
assert output_name in ["GNAP", 'GDC']
assert input_size[0] in [112]
self.conv1 = Conv_block(3, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1))
self.conv2_dw = Conv_block(64, 64, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64)
self.conv_23 = Depth_Wise(64, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128)
self.conv_3 = Residual(64, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv_34 = Depth_Wise(64, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256)
self.conv_4 = Residual(128, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv_45 = Depth_Wise(128, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512)
self.conv_5 = Residual(128, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv_6_sep = Conv_block(128, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0))
if output_name == "GNAP":
self.output_layer = GNAP(512)
else:
self.output_layer = GDC(embedding_size)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
out = self.conv1(x)
out = self.conv2_dw(out)
out = self.conv_23(out)
out = self.conv_3(out)
out = self.conv_34(out)
out = self.conv_4(out)
out = self.conv_45(out)
out = self.conv_5(out)
conv_features = self.conv_6_sep(out)
out = self.output_layer(conv_features)
return out, conv_features

BIN
mobilefacenet_model_best.pth (Stored with Git LFS)

Binary file not shown.
Loading…
Cancel
Save