copied
Readme
Files and versions
Updated 3 years ago
face-landmark-detection
Mobilefacenet Face Landmark Detecter
authors: David Wang
Desription
A class of extremely efficient CNN models to extract 68 landmarks from a facial image[1].
from towhee import ops
model = ops.face_landmark_detection.mobilefacenet()
landmark = model(img)
Factory Constructor
Create the operator via the following factory method
ops.face_landmark_detection.mobilefacenet()
Interface
An image embedding operator takes an image as input. it extracts the embedding back to ndarray.
Args:
framework
the framework of the model
supported types: str
, default is 'pytorch'
pretrained
whether load the pretrained weights..
supported types: bool
, default is True, using pretrained weights
Parameters:
image: towhee._types.Image
The input image.
Returns:: numpy.ndarray
The extracted facial landmark.
Code Example
extracted facial landmark from './img1.jpg'.
Write the pipeline in simplified style:
import towhee.DataCollection as dc
dc.glob('./img1.jpg')
.face_landmark_detection.mobilefacenet()
.to_list()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee.DataCollection as dc
dc.glob['path']('./img1.jpg')
.image_decode.cv2['path', 'img']()
.face_landmark_detection.mobilefacenet()
.to_list()
Reference
| 2 Commits | ||
---|---|---|---|
|
1.1 KiB
|
3 years ago | |
|
1.4 KiB
|
3 years ago | |
|
684 B
|
3 years ago | |
|
2.5 KiB
|
3 years ago | |
|
5.9 KiB
|
3 years ago | |
|
12 MiB
|
3 years ago |