|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torchvision import transforms
|
|
|
|
from torchvision.transforms.functional import InterpolationMode
|
|
|
|
|
|
|
|
import towhee
|
|
|
|
from towhee import register
|
|
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
|
|
from towhee.types.image_utils import from_pil, to_pil
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class Blip(NNOperator):
|
|
|
|
"""
|
|
|
|
BLIP multi-modal embedding operator
|
|
|
|
"""
|
|
|
|
def __init__(self, model_name: str):
|
|
|
|
super().__init__()
|
|
|
|
sys.path.append(str(Path(__file__).parent))
|
|
|
|
from models.blip import blip_decoder
|
|
|
|
image_size = 384
|
|
|
|
model_url = self._configs()[model_name]['weights']
|
|
|
|
self.model = blip_decoder(pretrained=model_url, image_size=image_size, vit='base')
|
|
|
|
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
self.model.to(self.device)
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
self.tfms = transforms.Compose([
|
|
|
|
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
|
|
|
])
|
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def __call__(self, img: towhee._types.Image):
|
|
|
|
vec = self._inference_from_image(img)
|
|
|
|
return vec
|
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def _inference_from_image(self, img: towhee._types.Image):
|
|
|
|
img = self._preprocess(img)
|
|
|
|
caption = self.model.generate(img, sample=False, num_beams=3, max_length=20, min_length=5)
|
|
|
|
return caption[0]
|
|
|
|
|
|
|
|
def _preprocess(self, img: towhee._types.Image):
|
|
|
|
img = to_pil(img)
|
|
|
|
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
|
|
|
|
return processed_img
|
|
|
|
|
|
|
|
def _configs(self):
|
|
|
|
config = {}
|
|
|
|
config['blip_base'] = {}
|
|
|
|
config['blip_base']['weights'] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'
|
|
|
|
return config
|
|
|
|
|