capdec
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
365 lines
16 KiB
365 lines
16 KiB
import os
|
|
from torch import nn
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as nnf
|
|
from typing import Tuple, List, Union, Optional
|
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
|
|
from tqdm import tqdm, trange
|
|
|
|
class ClipCaptionModel(nn.Module):
|
|
|
|
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor:
|
|
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device)
|
|
|
|
def forward(self, tokens: torch.Tensor, prefix: torch.Tensor, mask: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None):
|
|
embedding_text = self.gpt.transformer.wte(tokens)
|
|
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size)
|
|
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
|
|
if labels is not None:
|
|
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
|
|
labels = torch.cat((dummy_token, tokens), dim=1)
|
|
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
|
|
return out
|
|
|
|
def __init__(self):
|
|
super(ClipCaptionModel, self).__init__()
|
|
self.prefix_length = 40
|
|
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2')
|
|
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
|
|
self.clip_project = TransformerMapper(640, self.gpt_embedding_size, 40, 40, 8)
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.model(x)
|
|
|
|
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
|
|
super(MLP, self).__init__()
|
|
layers = []
|
|
for i in range(len(sizes) -1):
|
|
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
|
|
if i < len(sizes) - 2:
|
|
layers.append(act())
|
|
self.model = nn.Sequential(*layers)
|
|
|
|
class MlpTransformer(nn.Module):
|
|
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.):
|
|
super().__init__()
|
|
out_d = out_d if out_d is not None else in_dim
|
|
self.fc1 = nn.Linear(in_dim, h_dim)
|
|
self.act = act
|
|
self.fc2 = nn.Linear(h_dim, out_d)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.dropout(x)
|
|
x = self.fc2(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
|
|
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.):
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim_self // num_heads
|
|
self.scale = head_dim ** -0.5
|
|
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias)
|
|
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias)
|
|
self.project = nn.Linear(dim_self, dim_self)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, x, y=None, mask=None):
|
|
y = y if y is not None else x
|
|
b, n, c = x.shape
|
|
_, m, d = y.shape
|
|
# b n h dh
|
|
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads)
|
|
# b m 2 h dh
|
|
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads)
|
|
keys, values = keys_values[:, :, 0], keys_values[:, :, 1]
|
|
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale
|
|
if mask is not None:
|
|
if mask.dim() == 2:
|
|
mask = mask.unsqueeze(1)
|
|
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf"))
|
|
attention = attention.softmax(dim=2)
|
|
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c)
|
|
out = self.project(out)
|
|
return out, attention
|
|
|
|
|
|
class TransformerLayer(nn.Module):
|
|
|
|
def forward_with_attention(self, x, y=None, mask=None):
|
|
x_, attention = self.attn(self.norm1(x), y, mask)
|
|
x = x + x_
|
|
x = x + self.mlp(self.norm2(x))
|
|
return x, attention
|
|
|
|
def forward(self, x, y=None, mask=None):
|
|
x = x + self.attn(self.norm1(x), y, mask)[0]
|
|
x = x + self.mlp(self.norm2(x))
|
|
return x
|
|
|
|
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu,
|
|
norm_layer: nn.Module = nn.LayerNorm):
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim_self)
|
|
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout)
|
|
self.norm2 = norm_layer(dim_self)
|
|
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout)
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
|
|
def forward_with_attention(self, x, y=None, mask=None):
|
|
attentions = []
|
|
for layer in self.layers:
|
|
x, att = layer.forward_with_attention(x, y, mask)
|
|
attentions.append(att)
|
|
return x, attentions
|
|
|
|
def forward(self, x, y=None, mask=None):
|
|
for i, layer in enumerate(self.layers):
|
|
if i % 2 == 0 and self.enc_dec: # cross
|
|
x = layer(x, y)
|
|
elif self.enc_dec: # self
|
|
x = layer(x, x, mask)
|
|
else: # self or cross
|
|
x = layer(x, y, mask)
|
|
return x
|
|
|
|
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None,
|
|
mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False):
|
|
super(Transformer, self).__init__()
|
|
dim_ref = dim_ref if dim_ref is not None else dim_self
|
|
self.enc_dec = enc_dec
|
|
if enc_dec:
|
|
num_layers = num_layers * 2
|
|
layers = []
|
|
for i in range(num_layers):
|
|
if i % 2 == 0 and enc_dec: # cross
|
|
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
|
|
elif enc_dec: # self
|
|
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
|
|
else: # self or cross
|
|
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer))
|
|
self.layers = nn.ModuleList(layers)
|
|
|
|
|
|
class TransformerMapper(nn.Module):
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x).view(x.shape[0], self.clip_length, -1)
|
|
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape)
|
|
prefix = torch.cat((x, prefix), dim=1)
|
|
out = self.transformer(prefix)[:, self.clip_length:]
|
|
return out
|
|
|
|
def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8):
|
|
super(TransformerMapper, self).__init__()
|
|
self.clip_length = clip_length
|
|
self.transformer = Transformer(dim_embedding, 8, num_layers)
|
|
self.linear = nn.Linear(dim_clip, clip_length * dim_embedding)
|
|
self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True)
|
|
|
|
|
|
class ClipCaptionPrefix(ClipCaptionModel):
|
|
|
|
def parameters(self, recurse: bool = True):
|
|
return self.clip_project.parameters()
|
|
|
|
def train(self, mode: bool = True):
|
|
super(ClipCaptionPrefix, self).train(mode)
|
|
self.gpt.eval()
|
|
return self
|
|
|
|
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None,
|
|
entry_length=67, temperature=1., stop_token: str = '.'):
|
|
|
|
model.eval()
|
|
stop_token_index = tokenizer.encode(stop_token)[0]
|
|
tokens = None
|
|
scores = None
|
|
device = next(model.parameters()).device
|
|
seq_lengths = torch.ones(beam_size, device=device)
|
|
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
|
|
with torch.no_grad():
|
|
if embed is not None:
|
|
generated = embed
|
|
else:
|
|
if tokens is None:
|
|
tokens = torch.tensor(tokenizer.encode(prompt))
|
|
tokens = tokens.unsqueeze(0).to(device)
|
|
generated = model.gpt.transformer.wte(tokens)
|
|
for i in range(entry_length):
|
|
outputs = model.gpt(inputs_embeds=generated)
|
|
logits = outputs.logits
|
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
|
logits = logits.softmax(-1).log()
|
|
if scores is None:
|
|
scores, next_tokens = logits.topk(beam_size, -1)
|
|
generated = generated.expand(beam_size, *generated.shape[1:])
|
|
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
|
|
if tokens is None:
|
|
tokens = next_tokens
|
|
else:
|
|
tokens = tokens.expand(beam_size, *tokens.shape[1:])
|
|
tokens = torch.cat((tokens, next_tokens), dim=1)
|
|
else:
|
|
logits[is_stopped] = -float(np.inf)
|
|
logits[is_stopped, 0] = 0
|
|
scores_sum = scores[:, None] + logits
|
|
seq_lengths[~is_stopped] += 1
|
|
scores_sum_average = scores_sum / seq_lengths[:, None]
|
|
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
|
|
next_tokens_source = next_tokens // scores_sum.shape[1]
|
|
seq_lengths = seq_lengths[next_tokens_source]
|
|
next_tokens = next_tokens % scores_sum.shape[1]
|
|
next_tokens = next_tokens.unsqueeze(1)
|
|
tokens = tokens[next_tokens_source]
|
|
tokens = torch.cat((tokens, next_tokens), dim=1)
|
|
generated = generated[next_tokens_source]
|
|
scores = scores_sum_average * seq_lengths
|
|
is_stopped = is_stopped[next_tokens_source]
|
|
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
|
|
generated = torch.cat((generated, next_token_embed), dim=1)
|
|
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
|
|
if is_stopped.all():
|
|
break
|
|
scores = scores / seq_lengths
|
|
output_list = tokens.cpu().numpy()
|
|
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)]
|
|
order = scores.argsort(descending=True)
|
|
output_texts = [output_texts[i] for i in order]
|
|
return output_texts
|
|
|
|
|
|
def generate2(
|
|
model,
|
|
tokenizer,
|
|
tokens=None,
|
|
prompt=None,
|
|
embed=None,
|
|
entry_count=1,
|
|
entry_length=67, # maximum number of words
|
|
top_p=0.8,
|
|
temperature=1.,
|
|
stop_token: str = '.',
|
|
):
|
|
model.eval()
|
|
generated_num = 0
|
|
generated_list = []
|
|
stop_token_index = tokenizer.encode(stop_token)[0]
|
|
filter_value = -float("Inf")
|
|
device = next(model.parameters()).device
|
|
|
|
with torch.no_grad():
|
|
|
|
for entry_idx in trange(entry_count):
|
|
if embed is not None:
|
|
generated = embed
|
|
else:
|
|
if tokens is None:
|
|
tokens = torch.tensor(tokenizer.encode(prompt))
|
|
tokens = tokens.unsqueeze(0).to(device)
|
|
|
|
generated = model.gpt.transformer.wte(tokens)
|
|
|
|
for i in range(entry_length):
|
|
|
|
outputs = model.gpt(inputs_embeds=generated)
|
|
logits = outputs.logits
|
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1)
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
|
..., :-1
|
|
].clone()
|
|
sorted_indices_to_remove[..., 0] = 0
|
|
|
|
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
|
logits[:, indices_to_remove] = filter_value
|
|
next_token = torch.argmax(logits, -1).unsqueeze(0)
|
|
next_token_embed = model.gpt.transformer.wte(next_token)
|
|
if tokens is None:
|
|
tokens = next_token
|
|
else:
|
|
tokens = torch.cat((tokens, next_token), dim=1)
|
|
generated = torch.cat((generated, next_token_embed), dim=1)
|
|
if stop_token_index == next_token.item():
|
|
break
|
|
|
|
output_list = list(tokens.squeeze().cpu().numpy())
|
|
output_text = tokenizer.decode(output_list)
|
|
generated_list.append(output_text)
|
|
|
|
return generated_list[0]
|
|
|
|
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None,
|
|
entry_length=67, temperature=1., stop_token: str = '.'):
|
|
|
|
model.eval()
|
|
stop_token_index = tokenizer.encode(stop_token)[0]
|
|
tokens = None
|
|
scores = None
|
|
device = next(model.parameters()).device
|
|
seq_lengths = torch.ones(beam_size, device=device)
|
|
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
|
|
with torch.no_grad():
|
|
if embed is not None:
|
|
generated = embed
|
|
else:
|
|
if tokens is None:
|
|
tokens = torch.tensor(tokenizer.encode(prompt))
|
|
tokens = tokens.unsqueeze(0).to(device)
|
|
generated = model.gpt.transformer.wte(tokens)
|
|
for i in range(entry_length):
|
|
outputs = model.gpt(inputs_embeds=generated)
|
|
logits = outputs.logits
|
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
|
logits = logits.softmax(-1).log()
|
|
if scores is None:
|
|
scores, next_tokens = logits.topk(beam_size, -1)
|
|
generated = generated.expand(beam_size, *generated.shape[1:])
|
|
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
|
|
if tokens is None:
|
|
tokens = next_tokens
|
|
else:
|
|
tokens = tokens.expand(beam_size, *tokens.shape[1:])
|
|
tokens = torch.cat((tokens, next_tokens), dim=1)
|
|
else:
|
|
logits[is_stopped] = -float(np.inf)
|
|
logits[is_stopped, 0] = 0
|
|
scores_sum = scores[:, None] + logits
|
|
seq_lengths[~is_stopped] += 1
|
|
scores_sum_average = scores_sum / seq_lengths[:, None]
|
|
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1)
|
|
next_tokens_source = next_tokens // scores_sum.shape[1]
|
|
seq_lengths = seq_lengths[next_tokens_source]
|
|
next_tokens = next_tokens % scores_sum.shape[1]
|
|
next_tokens = next_tokens.unsqueeze(1)
|
|
tokens = tokens[next_tokens_source]
|
|
tokens = torch.cat((tokens, next_tokens), dim=1)
|
|
generated = generated[next_tokens_source]
|
|
scores = scores_sum_average * seq_lengths
|
|
is_stopped = is_stopped[next_tokens_source]
|
|
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1)
|
|
generated = torch.cat((generated, next_token_embed), dim=1)
|
|
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
|
|
if is_stopped.all():
|
|
break
|
|
scores = scores / seq_lengths
|
|
output_list = tokens.cpu().numpy()
|
|
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)]
|
|
order = scores.argsort(descending=True)
|
|
output_texts = [output_texts[i] for i in order]
|
|
return output_texts
|
|
|
|
pretrained_model_variance = "0.1" #@param ["0.0", "0.0001", "0.001", "0.015", "0.1", "2.5"]
|