logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

Updated 4 months ago

image-captioning

Fine-grained Image Captioning with CLIP Reward

author: David Wang


Description

This operator generates the caption with CLIPReward which describes the content of the given image. CLIPReward uses CLIP as a reward function and a simple finetuning strategy of the CLIP text encoder to impove grammar that does not require extra text annotation, thus towards to more descriptive and distinctive caption generation. This is an adaptation from j-min/CLIP-Caption-Reward.


Code Example

Load an image from path './animals.jpg' to generate the caption.

Write a pipeline with explicit inputs/outputs name specifications:

from towhee import pipe, ops, DataCollection

p = (
    pipe.input('url')
    .map('url', 'img', ops.image_decode.cv2_rgb())
    .map('img', 'text', ops.image_captioning.clip_caption_reward(model_name='clipRN50_clips_grammar'))
    .output('img', 'text')
)

DataCollection(p('./animals.jpg')).show()
result2


Factory Constructor

Create the operator via the following factory method

clip_caption_reward(model_name)

Parameters:

model_name: str

​ The model name of CLIPReward. Supported model names:

  • clipRN50_clips_grammar


Interface

An image captioning operator takes a towhee image as input and generate the correspoing caption.

Parameters:

img: towhee.types.Image (a sub-class of numpy.ndarray)

​ The image to generate caption.

Returns: str

​ The caption generated by model.

# More Resources

- [CLIP Object Detection: Merging AI Vision with Language Understanding - Zilliz blog](https://zilliz.com/learn/CLIP-object-detection-merge-AI-vision-with-language-understanding): CLIP Object Detection combines CLIP's text-image understanding with object detection tasks, allowing CLIP to locate and identify objects in images using texts.
Jael Gu df38a27427 Add more resources 10 Commits
folder-icon captioning init the repo. 2 years ago
folder-icon configs init the repo. 2 years ago
folder-icon data init the repo. 2 years ago
folder-icon mclip update the repo. 2 years ago
folder-icon utils init the repo. 2 years ago
folder-icon weights update the operator. 2 years ago
file-icon .DS_Store
8.0 KiB
download-icon
update the repo. 2 years ago
file-icon .gitattributes
1.1 KiB
download-icon
Initial commit 2 years ago
file-icon .gitignore
7 B
download-icon
update the operator. 2 years ago
file-icon README.md
3.6 KiB
download-icon
Add more resources 4 months ago
file-icon __init__.py
729 B
download-icon
update the repo. 2 years ago
file-icon cap.png
12 KiB
download-icon
update the repo. 2 years ago
file-icon clip_caption_reward.py
5.5 KiB
download-icon
update the readme. 2 years ago
file-icon requirements.txt
52 B
download-icon
amend the requirement. 2 years ago
file-icon tabular.png
94 KiB
download-icon
update the repo. 2 years ago
file-icon transformer_model.py
14 KiB
download-icon
init the repo. 2 years ago