clipcap
copied
wxywb
2 years ago
4 changed files with 4 additions and 167 deletions
@ -1,166 +0,0 @@ |
|||
import clip |
|||
import torch |
|||
import skimage.io as io |
|||
import PIL.Image |
|||
import numpy as np |
|||
import torch.nn.functional as nnf |
|||
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup |
|||
from tqdm import tqdm, trange |
|||
from clipcap_model import MLP, ClipCaptionModel, ClipCaptionPrefix |
|||
|
|||
is_gpu = False |
|||
device = CUDA(0) if is_gpu else "cpu" |
|||
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False) |
|||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|||
CPU = torch.device('cpu') |
|||
|
|||
|
|||
def generate2( |
|||
model, |
|||
tokenizer, |
|||
tokens=None, |
|||
prompt=None, |
|||
embed=None, |
|||
entry_count=1, |
|||
entry_length=67, # maximum number of words |
|||
top_p=0.8, |
|||
temperature=1., |
|||
stop_token: str = '.', |
|||
): |
|||
model.eval() |
|||
generated_num = 0 |
|||
generated_list = [] |
|||
stop_token_index = tokenizer.encode(stop_token)[0] |
|||
filter_value = -float("Inf") |
|||
device = next(model.parameters()).device |
|||
|
|||
with torch.no_grad(): |
|||
|
|||
for entry_idx in trange(entry_count): |
|||
if embed is not None: |
|||
generated = embed |
|||
else: |
|||
if tokens is None: |
|||
tokens = torch.tensor(tokenizer.encode(prompt)) |
|||
tokens = tokens.unsqueeze(0).to(device) |
|||
|
|||
generated = model.gpt.transformer.wte(tokens) |
|||
|
|||
for i in range(entry_length): |
|||
|
|||
outputs = model.gpt(inputs_embeds=generated) |
|||
logits = outputs.logits |
|||
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|||
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|||
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) |
|||
sorted_indices_to_remove = cumulative_probs > top_p |
|||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ ..., :-1].clone() |
|||
sorted_indices_to_remove[..., 0] = 0 |
|||
|
|||
indices_to_remove = sorted_indices[sorted_indices_to_remove] |
|||
logits[:, indices_to_remove] = filter_value |
|||
next_token = torch.argmax(logits, -1).unsqueeze(0) |
|||
next_token_embed = model.gpt.transformer.wte(next_token) |
|||
if tokens is None: |
|||
tokens = next_token |
|||
else: |
|||
tokens = torch.cat((tokens, next_token), dim=1) |
|||
generated = torch.cat((generated, next_token_embed), dim=1) |
|||
if stop_token_index == next_token.item(): |
|||
break |
|||
|
|||
output_list = list(tokens.squeeze().cpu().numpy()) |
|||
output_text = tokenizer.decode(output_list) |
|||
generated_list.append(output_text) |
|||
|
|||
return generated_list[0] |
|||
|
|||
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, |
|||
entry_length=67, temperature=1., stop_token: str = '.'): |
|||
|
|||
model.eval() |
|||
stop_token_index = tokenizer.encode(stop_token)[0] |
|||
tokens = None |
|||
scores = None |
|||
device = next(model.parameters()).device |
|||
seq_lengths = torch.ones(beam_size, device=device) |
|||
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) |
|||
with torch.no_grad(): |
|||
if embed is not None: |
|||
generated = embed |
|||
else: |
|||
if tokens is None: |
|||
tokens = torch.tensor(tokenizer.encode(prompt)) |
|||
tokens = tokens.unsqueeze(0).to(device) |
|||
generated = model.gpt.transformer.wte(tokens) |
|||
for i in range(entry_length): |
|||
outputs = model.gpt(inputs_embeds=generated) |
|||
logits = outputs.logits |
|||
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|||
logits = logits.softmax(-1).log() |
|||
if scores is None: |
|||
scores, next_tokens = logits.topk(beam_size, -1) |
|||
generated = generated.expand(beam_size, *generated.shape[1:]) |
|||
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) |
|||
if tokens is None: |
|||
tokens = next_tokens |
|||
else: |
|||
tokens = tokens.expand(beam_size, *tokens.shape[1:]) |
|||
tokens = torch.cat((tokens, next_tokens), dim=1) |
|||
else: |
|||
logits[is_stopped] = -float(np.inf) |
|||
logits[is_stopped, 0] = 0 |
|||
scores_sum = scores[:, None] + logits |
|||
seq_lengths[~is_stopped] += 1 |
|||
scores_sum_average = scores_sum / seq_lengths[:, None] |
|||
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) |
|||
next_tokens_source = next_tokens // scores_sum.shape[1] |
|||
seq_lengths = seq_lengths[next_tokens_source] |
|||
next_tokens = next_tokens % scores_sum.shape[1] |
|||
next_tokens = next_tokens.unsqueeze(1) |
|||
tokens = tokens[next_tokens_source] |
|||
tokens = torch.cat((tokens, next_tokens), dim=1) |
|||
generated = generated[next_tokens_source] |
|||
scores = scores_sum_average * seq_lengths |
|||
is_stopped = is_stopped[next_tokens_source] |
|||
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) |
|||
generated = torch.cat((generated, next_token_embed), dim=1) |
|||
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() |
|||
if is_stopped.all(): |
|||
break |
|||
scores = scores / seq_lengths |
|||
output_list = tokens.cpu().numpy() |
|||
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] |
|||
order = scores.argsort(descending=True) |
|||
output_texts = [output_texts[i] for i in order] |
|||
return output_texts |
|||
|
|||
prefix_length = 10 |
|||
|
|||
model = ClipCaptionModel(prefix_length) |
|||
model_path = '/Users/zilliz/git/image_captioning/git/clipcap/weights/coco_weights.pt' |
|||
model.load_state_dict(torch.load(model_path, map_location=CPU)) |
|||
model = model.eval() |
|||
|
|||
use_beam_search = False #@param {type:"boolean"} |
|||
use_beam_search = True #@param {type:"boolean"} |
|||
|
|||
UPLOADED_FILE = 'einstein.jpg' |
|||
image = io.imread(UPLOADED_FILE) |
|||
pil_image = PIL.Image.fromarray(image) |
|||
|
|||
image = preprocess(pil_image).unsqueeze(0).to(device) |
|||
with torch.no_grad(): |
|||
# if type(model) is ClipCaptionE2E: |
|||
# prefix_embed = model.forward_image(image) |
|||
# else: |
|||
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32) |
|||
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) |
|||
if use_beam_search: |
|||
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0] |
|||
else: |
|||
generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed) |
|||
|
|||
print(generated_text_prefix) |
|||
|
|||
|
Binary file not shown.
@ -0,0 +1,4 @@ |
|||
transformers |
|||
torch |
|||
towhee>=0.7 |
|||
towhee.models>=0.7 |
Loading…
Reference in new issue