clipcap
copied
wxywb
3 years ago
8 changed files with 489 additions and 1 deletions
@ -1,2 +1,85 @@ |
|||
# clipcap |
|||
# Image Captioning with BLIP |
|||
|
|||
*author: David Wang* |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Description |
|||
|
|||
This operator generates the caption with [BLIP](https://arxiv.org/abs/2201.12086) which describes the content of the given image. This is an adaptation from [salesforce/BLIP](https://github.com/salesforce/BLIP). |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Load an image from path './animals.jpg' to generate the caption. |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob('./animals.jpg') \ |
|||
.image_decode() \ |
|||
.image_captioning.blip(model_name='blip_base') \ |
|||
.select() \ |
|||
.show() |
|||
``` |
|||
<img src="./cap.png" alt="result1" style="height:20px;"/> |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob['path']('./animals.jpg') \ |
|||
.image_decode['path', 'img']() \ |
|||
.image_captioning.blip['img', 'text'](model_name='blip_base') \ |
|||
.select['img', 'text']() \ |
|||
.show() |
|||
``` |
|||
<img src="./tabular.png" alt="result2" style="height:60px;"/> |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***blip(model_name)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***model_name:*** *str* |
|||
|
|||
The model name of BLIP. Supported model names: |
|||
- blip_base |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Interface |
|||
|
|||
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input and generate the correspoing caption. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* |
|||
|
|||
The image to generate embedding. |
|||
|
|||
|
|||
|
|||
**Returns:** *str* |
|||
|
|||
The caption generated by model. |
|||
|
@ -0,0 +1,18 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .clipcap import ClipCap |
|||
|
|||
def clipcap(model_name: str): |
|||
return ClipCap(model_name) |
@ -0,0 +1,79 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
import os |
|||
import torch |
|||
from pathlib import Path |
|||
from torchvision import transforms |
|||
|
|||
from towhee.types.image_utils import to_pil |
|||
from towhee.operator.base import NNOperator, OperatorFlag |
|||
from towhee import register |
|||
from towhee.models import clip |
|||
|
|||
class ClipCap(NNOperator): |
|||
""" |
|||
ClipCap image captioning operator |
|||
""" |
|||
def __init__(self, model_name: str): |
|||
super().__init__(): |
|||
sys.path.append(str(Path(__file__).parent)) |
|||
from models.clipcap import ClipCaptionModel |
|||
config = self._configs()[model_name] |
|||
|
|||
self.clip_tfms = self.tfms = transforms.Compose([ |
|||
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC), |
|||
transforms.CenterCrop(224), |
|||
transforms.ToTensor(), |
|||
transforms.Normalize( |
|||
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|||
]) |
|||
|
|||
clip_model_type = 'clip_vit_b32' |
|||
self.clip_model = clip.create_model(model_name=clip_model_type, pretrained=True, jit=True) |
|||
|
|||
self.model = ClipCaptionModel(prefix = 10) |
|||
model_path = os.path.dirname(__file__) + '/weights/' + config['weights'] |
|||
self.model.load_state_dict(torch.load(model_path, map_location=CPU)) |
|||
self.model = model.eval() |
|||
|
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def __call__(self, data:): |
|||
vec = self._inference_from_image(data) |
|||
return vec |
|||
|
|||
def _preprocess(self, img): |
|||
img = to_pil(img) |
|||
processed_img = self.self.clip_tfms(img).unsqueeze(0).to(self.device) |
|||
return processed_img |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def _inference_from_image(self, img): |
|||
img = self._preprocess(img) |
|||
clip_feat = self.clip_model.encode_image(image) |
|||
|
|||
prefix_length = 10 |
|||
prefix_embed = self.model.clip_project(clip_feat).reshape(1, prefix_length, -1) |
|||
|
|||
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0] |
|||
return generated_text_prefix |
|||
|
|||
def _configs(self): |
|||
config = {} |
|||
config['clipcap_coco'] = {} |
|||
config['clipcap_coco']['weights'] = 'weights/coco_weights.pt' |
|||
config['clipcap_conceptual'] = {} |
|||
config['clipcap_conceptual']['weights'] = 'weights/conceptual_weights.pt' |
|||
return config |
|||
|
@ -0,0 +1,166 @@ |
|||
import clip |
|||
import torch |
|||
import skimage.io as io |
|||
import PIL.Image |
|||
import numpy as np |
|||
import torch.nn.functional as nnf |
|||
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup |
|||
from tqdm import tqdm, trange |
|||
from clipcap_model import MLP, ClipCaptionModel, ClipCaptionPrefix |
|||
|
|||
is_gpu = False |
|||
device = CUDA(0) if is_gpu else "cpu" |
|||
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False) |
|||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|||
CPU = torch.device('cpu') |
|||
|
|||
|
|||
def generate2( |
|||
model, |
|||
tokenizer, |
|||
tokens=None, |
|||
prompt=None, |
|||
embed=None, |
|||
entry_count=1, |
|||
entry_length=67, # maximum number of words |
|||
top_p=0.8, |
|||
temperature=1., |
|||
stop_token: str = '.', |
|||
): |
|||
model.eval() |
|||
generated_num = 0 |
|||
generated_list = [] |
|||
stop_token_index = tokenizer.encode(stop_token)[0] |
|||
filter_value = -float("Inf") |
|||
device = next(model.parameters()).device |
|||
|
|||
with torch.no_grad(): |
|||
|
|||
for entry_idx in trange(entry_count): |
|||
if embed is not None: |
|||
generated = embed |
|||
else: |
|||
if tokens is None: |
|||
tokens = torch.tensor(tokenizer.encode(prompt)) |
|||
tokens = tokens.unsqueeze(0).to(device) |
|||
|
|||
generated = model.gpt.transformer.wte(tokens) |
|||
|
|||
for i in range(entry_length): |
|||
|
|||
outputs = model.gpt(inputs_embeds=generated) |
|||
logits = outputs.logits |
|||
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|||
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|||
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) |
|||
sorted_indices_to_remove = cumulative_probs > top_p |
|||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ ..., :-1].clone() |
|||
sorted_indices_to_remove[..., 0] = 0 |
|||
|
|||
indices_to_remove = sorted_indices[sorted_indices_to_remove] |
|||
logits[:, indices_to_remove] = filter_value |
|||
next_token = torch.argmax(logits, -1).unsqueeze(0) |
|||
next_token_embed = model.gpt.transformer.wte(next_token) |
|||
if tokens is None: |
|||
tokens = next_token |
|||
else: |
|||
tokens = torch.cat((tokens, next_token), dim=1) |
|||
generated = torch.cat((generated, next_token_embed), dim=1) |
|||
if stop_token_index == next_token.item(): |
|||
break |
|||
|
|||
output_list = list(tokens.squeeze().cpu().numpy()) |
|||
output_text = tokenizer.decode(output_list) |
|||
generated_list.append(output_text) |
|||
|
|||
return generated_list[0] |
|||
|
|||
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, |
|||
entry_length=67, temperature=1., stop_token: str = '.'): |
|||
|
|||
model.eval() |
|||
stop_token_index = tokenizer.encode(stop_token)[0] |
|||
tokens = None |
|||
scores = None |
|||
device = next(model.parameters()).device |
|||
seq_lengths = torch.ones(beam_size, device=device) |
|||
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) |
|||
with torch.no_grad(): |
|||
if embed is not None: |
|||
generated = embed |
|||
else: |
|||
if tokens is None: |
|||
tokens = torch.tensor(tokenizer.encode(prompt)) |
|||
tokens = tokens.unsqueeze(0).to(device) |
|||
generated = model.gpt.transformer.wte(tokens) |
|||
for i in range(entry_length): |
|||
outputs = model.gpt(inputs_embeds=generated) |
|||
logits = outputs.logits |
|||
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|||
logits = logits.softmax(-1).log() |
|||
if scores is None: |
|||
scores, next_tokens = logits.topk(beam_size, -1) |
|||
generated = generated.expand(beam_size, *generated.shape[1:]) |
|||
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) |
|||
if tokens is None: |
|||
tokens = next_tokens |
|||
else: |
|||
tokens = tokens.expand(beam_size, *tokens.shape[1:]) |
|||
tokens = torch.cat((tokens, next_tokens), dim=1) |
|||
else: |
|||
logits[is_stopped] = -float(np.inf) |
|||
logits[is_stopped, 0] = 0 |
|||
scores_sum = scores[:, None] + logits |
|||
seq_lengths[~is_stopped] += 1 |
|||
scores_sum_average = scores_sum / seq_lengths[:, None] |
|||
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) |
|||
next_tokens_source = next_tokens // scores_sum.shape[1] |
|||
seq_lengths = seq_lengths[next_tokens_source] |
|||
next_tokens = next_tokens % scores_sum.shape[1] |
|||
next_tokens = next_tokens.unsqueeze(1) |
|||
tokens = tokens[next_tokens_source] |
|||
tokens = torch.cat((tokens, next_tokens), dim=1) |
|||
generated = generated[next_tokens_source] |
|||
scores = scores_sum_average * seq_lengths |
|||
is_stopped = is_stopped[next_tokens_source] |
|||
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) |
|||
generated = torch.cat((generated, next_token_embed), dim=1) |
|||
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() |
|||
if is_stopped.all(): |
|||
break |
|||
scores = scores / seq_lengths |
|||
output_list = tokens.cpu().numpy() |
|||
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] |
|||
order = scores.argsort(descending=True) |
|||
output_texts = [output_texts[i] for i in order] |
|||
return output_texts |
|||
|
|||
prefix_length = 10 |
|||
|
|||
model = ClipCaptionModel(prefix_length) |
|||
model_path = '/Users/zilliz/git/image_captioning/git/clipcap/weights/coco_weights.pt' |
|||
model.load_state_dict(torch.load(model_path, map_location=CPU)) |
|||
model = model.eval() |
|||
|
|||
use_beam_search = False #@param {type:"boolean"} |
|||
use_beam_search = True #@param {type:"boolean"} |
|||
|
|||
UPLOADED_FILE = 'einstein.jpg' |
|||
image = io.imread(UPLOADED_FILE) |
|||
pil_image = PIL.Image.fromarray(image) |
|||
|
|||
image = preprocess(pil_image).unsqueeze(0).to(device) |
|||
with torch.no_grad(): |
|||
# if type(model) is ClipCaptionE2E: |
|||
# prefix_embed = model.forward_image(image) |
|||
# else: |
|||
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32) |
|||
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1) |
|||
if use_beam_search: |
|||
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0] |
|||
else: |
|||
generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed) |
|||
|
|||
print(generated_text_prefix) |
|||
|
|||
|
Binary file not shown.
@ -0,0 +1,136 @@ |
|||
import torch |
|||
import torch.nn.functional as nnf |
|||
#@title Imports |
|||
|
|||
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup |
|||
import clip |
|||
import os |
|||
from typing import Tuple, List, Union, Optional |
|||
from torch import nn |
|||
import numpy as np |
|||
import torch |
|||
import torch.nn.functional as nnf |
|||
import sys |
|||
|
|||
T = torch.Tensor |
|||
D = torch.device |
|||
is_gpu = False |
|||
|
|||
def get_device(device_id: int) -> D: |
|||
if not torch.cuda.is_available(): |
|||
return CPU |
|||
device_id = min(torch.cuda.device_count() - 1, device_id) |
|||
return torch.device(f'cuda:{device_id}') |
|||
|
|||
class MLP(nn.Module): |
|||
|
|||
def forward(self, x: T) -> T: |
|||
return self.model(x) |
|||
|
|||
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): |
|||
super(MLP, self).__init__() |
|||
layers = [] |
|||
for i in range(len(sizes) -1): |
|||
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) |
|||
if i < len(sizes) - 2: |
|||
layers.append(act()) |
|||
self.model = nn.Sequential(*layers) |
|||
|
|||
class ClipCaptionModel(nn.Module): |
|||
|
|||
#@functools.lru_cache #FIXME |
|||
def get_dummy_token(self, batch_size: int, device: D) -> T: |
|||
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) |
|||
|
|||
def forward(self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None): |
|||
embedding_text = self.gpt.transformer.wte(tokens) |
|||
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) |
|||
#print(embedding_text.size()) #torch.Size([5, 67, 768]) |
|||
#print(prefix_projections.size()) #torch.Size([5, 1, 768]) |
|||
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) |
|||
if labels is not None: |
|||
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) |
|||
labels = torch.cat((dummy_token, tokens), dim=1) |
|||
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) |
|||
return out |
|||
|
|||
def __init__(self, prefix_length: int, prefix_size: int = 512): |
|||
super(ClipCaptionModel, self).__init__() |
|||
self.prefix_length = prefix_length |
|||
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') |
|||
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] |
|||
if prefix_length > 10: # not enough memory |
|||
self.clip_project = nn.Linear(prefix_size, self.gpt_embedding_size * prefix_length) |
|||
else: |
|||
self.clip_project = MLP((prefix_size, (self.gpt_embedding_size * prefix_length) // 2, self.gpt_embedding_size * prefix_length)) |
|||
|
|||
class ClipCaptionPrefix(ClipCaptionModel): |
|||
|
|||
def parameters(self, recurse: bool = True): |
|||
return self.clip_project.parameters() |
|||
|
|||
def train(self, mode: bool = True): |
|||
super(ClipCaptionPrefix, self).train(mode) |
|||
self.gpt.eval() |
|||
return self |
|||
|
|||
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, |
|||
entry_length=67, temperature=1., stop_token: str = '.'): |
|||
|
|||
model.eval() |
|||
stop_token_index = tokenizer.encode(stop_token)[0] |
|||
tokens = None |
|||
scores = None |
|||
device = next(model.parameters()).device |
|||
seq_lengths = torch.ones(beam_size, device=device) |
|||
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) |
|||
with torch.no_grad(): |
|||
if embed is not None: |
|||
generated = embed |
|||
else: |
|||
if tokens is None: |
|||
tokens = torch.tensor(tokenizer.encode(prompt)) |
|||
tokens = tokens.unsqueeze(0).to(device) |
|||
generated = model.gpt.transformer.wte(tokens) |
|||
for i in range(entry_length): |
|||
outputs = model.gpt(inputs_embeds=generated) |
|||
logits = outputs.logits |
|||
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|||
logits = logits.softmax(-1).log() |
|||
if scores is None: |
|||
scores, next_tokens = logits.topk(beam_size, -1) |
|||
generated = generated.expand(beam_size, *generated.shape[1:]) |
|||
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) |
|||
if tokens is None: |
|||
tokens = next_tokens |
|||
else: |
|||
tokens = tokens.expand(beam_size, *tokens.shape[1:]) |
|||
tokens = torch.cat((tokens, next_tokens), dim=1) |
|||
else: |
|||
logits[is_stopped] = -float(np.inf) |
|||
logits[is_stopped, 0] = 0 |
|||
scores_sum = scores[:, None] + logits |
|||
seq_lengths[~is_stopped] += 1 |
|||
scores_sum_average = scores_sum / seq_lengths[:, None] |
|||
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) |
|||
next_tokens_source = next_tokens // scores_sum.shape[1] |
|||
seq_lengths = seq_lengths[next_tokens_source] |
|||
next_tokens = next_tokens % scores_sum.shape[1] |
|||
next_tokens = next_tokens.unsqueeze(1) |
|||
tokens = tokens[next_tokens_source] |
|||
tokens = torch.cat((tokens, next_tokens), dim=1) |
|||
generated = generated[next_tokens_source] |
|||
scores = scores_sum_average * seq_lengths |
|||
is_stopped = is_stopped[next_tokens_source] |
|||
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) |
|||
generated = torch.cat((generated, next_token_embed), dim=1) |
|||
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() |
|||
if is_stopped.all(): |
|||
break |
|||
scores = scores / seq_lengths |
|||
output_list = tokens.cpu().numpy() |
|||
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] |
|||
order = scores.argsort(descending=True) |
|||
output_texts = [output_texts[i] for i in order] |
|||
return output_texts |
|||
|
Binary file not shown.
Binary file not shown.
Loading…
Reference in new issue