logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

79 lines
2.8 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from pathlib import Path
from torchvision import transforms
from towhee.types.image_utils import to_pil
from towhee.operator.base import NNOperator, OperatorFlag
from towhee import register
from towhee.models import clip
class ClipCap(NNOperator):
"""
ClipCap image captioning operator
"""
def __init__(self, model_name: str):
super().__init__():
sys.path.append(str(Path(__file__).parent))
from models.clipcap import ClipCaptionModel
config = self._configs()[model_name]
self.clip_tfms = self.tfms = transforms.Compose([
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])
clip_model_type = 'clip_vit_b32'
self.clip_model = clip.create_model(model_name=clip_model_type, pretrained=True, jit=True)
self.model = ClipCaptionModel(prefix = 10)
model_path = os.path.dirname(__file__) + '/weights/' + config['weights']
self.model.load_state_dict(torch.load(model_path, map_location=CPU))
self.model = model.eval()
@arg(1, to_image_color('RGB'))
def __call__(self, data:):
vec = self._inference_from_image(data)
return vec
def _preprocess(self, img):
img = to_pil(img)
processed_img = self.self.clip_tfms(img).unsqueeze(0).to(self.device)
return processed_img
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = self._preprocess(img)
clip_feat = self.clip_model.encode_image(image)
prefix_length = 10
prefix_embed = self.model.clip_project(clip_feat).reshape(1, prefix_length, -1)
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0]
return generated_text_prefix
def _configs(self):
config = {}
config['clipcap_coco'] = {}
config['clipcap_coco']['weights'] = 'weights/coco_weights.pt'
config['clipcap_conceptual'] = {}
config['clipcap_conceptual']['weights'] = 'weights/conceptual_weights.pt'
return config