logo
Browse Source

bugfix for the operator.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 2 years ago
parent
commit
d354584a2c
  1. 38
      clipcap.py

38
clipcap.py

@ -11,11 +11,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import torch
from pathlib import Path
import torch
from torchvision import transforms
from transformers import GPT2Tokenizer
from towhee.types.arg import arg, to_image_color
from towhee.types.image_utils import to_pil
from towhee.operator.base import NNOperator, OperatorFlag
from towhee import register
@ -26,11 +31,16 @@ class ClipCap(NNOperator):
ClipCap image captioning operator
"""
def __init__(self, model_name: str):
super().__init__():
super().__init__()
sys.path.append(str(Path(__file__).parent))
from models.clipcap import ClipCaptionModel
from models.clipcap import ClipCaptionModel, generate_beam
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.generate_beam = generate_beam
self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
config = self._configs()[model_name]
self.prefix_length = 10
self.clip_tfms = self.tfms = transforms.Compose([
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(224),
@ -42,38 +52,38 @@ class ClipCap(NNOperator):
clip_model_type = 'clip_vit_b32'
self.clip_model = clip.create_model(model_name=clip_model_type, pretrained=True, jit=True)
self.model = ClipCaptionModel(prefix = 10)
self.model = ClipCaptionModel(self.prefix_length)
model_path = os.path.dirname(__file__) + '/weights/' + config['weights']
self.model.load_state_dict(torch.load(model_path, map_location=CPU))
self.model = model.eval()
self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
self.model = self.model.eval()
@arg(1, to_image_color('RGB'))
def __call__(self, data:):
def __call__(self, data):
vec = self._inference_from_image(data)
return vec
def _preprocess(self, img):
img = to_pil(img)
processed_img = self.self.clip_tfms(img).unsqueeze(0).to(self.device)
processed_img = self.clip_tfms(img).unsqueeze(0).to(self.device)
return processed_img
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = self._preprocess(img)
clip_feat = self.clip_model.encode_image(image)
clip_feat = self.clip_model.encode_image(img)
prefix_length = 10
prefix_embed = self.model.clip_project(clip_feat).reshape(1, prefix_length, -1)
self.prefix_length = 10
prefix_embed = self.model.clip_project(clip_feat).reshape(1, self.prefix_length, -1)
generated_text_prefix = generate_beam(model, tokenizer, embed=prefix_embed)[0]
generated_text_prefix = self.generate_beam(self.model, self.tokenizer, embed=prefix_embed)[0]
return generated_text_prefix
def _configs(self):
config = {}
config['clipcap_coco'] = {}
config['clipcap_coco']['weights'] = 'weights/coco_weights.pt'
config['clipcap_coco']['weights'] = 'coco_weights.pt'
config['clipcap_conceptual'] = {}
config['clipcap_conceptual']['weights'] = 'weights/conceptual_weights.pt'
config['clipcap_conceptual']['weights'] = 'conceptual_weights.pt'
return config

Loading…
Cancel
Save