logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

187 lines
9.0 KiB

import torch
from models.layers import EmbeddingLayer, DecoderLayer, EncoderLayer
from utils.masking import create_pad_mask, create_no_peak_and_pad_mask
from models.captioning_model import CaptioningModel
from models.swin_transformer_mod import SwinTransformer
import torch.nn as nn
class End_ExpansionNet_v2(CaptioningModel):
def __init__(self,
# swin transf
swin_img_size, swin_patch_size, swin_in_chans,
swin_embed_dim, swin_depths, swin_num_heads,
swin_window_size, swin_mlp_ratio, swin_qkv_bias, swin_qk_scale,
swin_drop_rate, swin_attn_drop_rate, swin_drop_path_rate,
swin_norm_layer, swin_ape, swin_patch_norm,
swin_use_checkpoint,
# linear_size,
final_swin_dim,
# captioning
d_model, N_enc, N_dec, ff, num_heads, num_exp_enc_list, num_exp_dec,
output_word2idx, output_idx2word, max_seq_len, drop_args, rank=0):
super(End_ExpansionNet_v2, self).__init__()
self.swin_transf = SwinTransformer(
img_size=swin_img_size, patch_size=swin_patch_size, in_chans=swin_in_chans,
embed_dim=swin_embed_dim, depths=swin_depths, num_heads=swin_num_heads,
window_size=swin_window_size, mlp_ratio=swin_mlp_ratio, qkv_bias=swin_qkv_bias, qk_scale=swin_qk_scale,
drop_rate=swin_drop_rate, attn_drop_rate=swin_attn_drop_rate, drop_path_rate=swin_drop_path_rate,
norm_layer=swin_norm_layer, ape=swin_ape, patch_norm=swin_patch_norm,
use_checkpoint=swin_use_checkpoint)
self.output_word2idx = output_word2idx
self.output_idx2word = output_idx2word
self.max_seq_len = max_seq_len
self.num_exp_dec = num_exp_dec
self.num_exp_enc_list = num_exp_enc_list
self.N_enc = N_enc
self.N_dec = N_dec
self.d_model = d_model
self.encoders = nn.ModuleList([EncoderLayer(d_model, ff, num_exp_enc_list, drop_args.enc) for _ in range(N_enc)])
self.decoders = nn.ModuleList([DecoderLayer(d_model, num_heads, ff, num_exp_dec, drop_args.dec) for _ in range(N_dec)])
self.input_embedder_dropout = nn.Dropout(drop_args.enc_input)
self.input_linear = torch.nn.Linear(final_swin_dim, d_model)
self.vocab_linear = torch.nn.Linear(d_model, len(output_word2idx))
self.log_softmax = nn.LogSoftmax(dim=-1)
self.out_enc_dropout = nn.Dropout(drop_args.other)
self.out_dec_dropout = nn.Dropout(drop_args.other)
self.out_embedder = EmbeddingLayer(len(output_word2idx), d_model, drop_args.dec_input)
self.pos_encoder = nn.Embedding(max_seq_len, d_model)
self.enc_reduce_group = nn.Linear(d_model * self.N_enc, d_model)
self.enc_reduce_norm = nn.LayerNorm(d_model)
self.dec_reduce_group = nn.Linear(d_model * self.N_dec, d_model)
self.dec_reduce_norm = nn.LayerNorm(d_model)
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
self.trained_steps = 0
self.rank = rank
self.check_required_attributes()
def forward_enc(self, enc_input, enc_input_num_pads):
assert (enc_input_num_pads is None or enc_input_num_pads == ([0] * enc_input.size(0))), "End to End case have no padding"
x = self.swin_transf(enc_input)
# --------------- Normale parte di Captioning ---------------------------------
enc_input = self.input_embedder_dropout(self.input_linear(x))
x = enc_input
enc_input_num_pads = [0] * enc_input.size(0)
max_num_enc = sum(self.num_exp_enc_list)
pos_x = torch.arange(max_num_enc).unsqueeze(0).expand(enc_input.size(0), max_num_enc).to(self.rank)
pad_mask = create_pad_mask(mask_size=(enc_input.size(0), max_num_enc, enc_input.size(1)),
pad_along_row_input=[0] * enc_input.size(0),
pad_along_column_input=enc_input_num_pads,
rank=self.rank)
x_list = []
for i in range(self.N_enc):
x = self.encoders[i](x=x, n_indexes=pos_x, mask=pad_mask)
x_list.append(x)
x_list = torch.cat(x_list, dim=-1)
x = x + self.out_enc_dropout(self.enc_reduce_group(x_list))
x = self.enc_reduce_norm(x)
return x
def forward_dec(self, cross_input, enc_input_num_pads, dec_input, dec_input_num_pads, apply_log_softmax=False):
assert (enc_input_num_pads is None or enc_input_num_pads == ([0] * cross_input.size(0))), "enc_input_num_pads should be no None"
enc_input_num_pads = [0] * dec_input.size(0)
no_peak_and_pad_mask = create_no_peak_and_pad_mask(
mask_size=(dec_input.size(0), dec_input.size(1), dec_input.size(1)),
num_pads=dec_input_num_pads,
rank=self.rank)
pad_mask = create_pad_mask(mask_size=(dec_input.size(0), dec_input.size(1), cross_input.size(1)),
pad_along_row_input=dec_input_num_pads,
pad_along_column_input=enc_input_num_pads,
rank=self.rank)
y = self.out_embedder(dec_input)
pos_x = torch.arange(self.num_exp_dec).unsqueeze(0).expand(dec_input.size(0), self.num_exp_dec).to(self.rank)
pos_y = torch.arange(dec_input.size(1)).unsqueeze(0).expand(dec_input.size(0), dec_input.size(1)).to(self.rank)
y = y + self.pos_encoder(pos_y)
y_list = []
for i in range(self.N_dec):
y = self.decoders[i](x=y,
n_indexes=pos_x,
cross_connection_x=cross_input,
input_attention_mask=no_peak_and_pad_mask,
cross_attention_mask=pad_mask)
y_list.append(y)
y_list = torch.cat(y_list, dim=-1)
y = y + self.out_dec_dropout(self.dec_reduce_group(y_list))
y = self.dec_reduce_norm(y)
y = self.vocab_linear(y)
if apply_log_softmax:
y = self.log_softmax(y)
return y
def get_batch_multiple_sampled_prediction(self, enc_input, enc_input_num_pads, num_outputs,
sos_idx, eos_idx, max_seq_len):
bs = enc_input.size(0)
x = self.forward_enc(enc_input=enc_input, enc_input_num_pads=enc_input_num_pads)
enc_seq_len = x.size(1)
x = x.unsqueeze(1).expand(-1, num_outputs, -1, -1).reshape(bs * num_outputs, enc_seq_len, x.shape[-1])
upperbound_vector = torch.tensor([max_seq_len] * bs * num_outputs, dtype=torch.int).to(self.rank)
where_is_eos_vector = upperbound_vector.clone()
eos_vector = torch.tensor([eos_idx] * bs * num_outputs, dtype=torch.long).to(self.rank)
finished_flag_vector = torch.zeros(bs * num_outputs).type(torch.int)
predicted_caption = torch.tensor([sos_idx] * (bs * num_outputs), dtype=torch.long).to(self.rank).unsqueeze(-1)
predicted_caption_prob = torch.zeros(bs * num_outputs).to(self.rank).unsqueeze(-1)
dec_input_num_pads = [0]*(bs*num_outputs)
time_step = 0
while (finished_flag_vector.sum() != bs * num_outputs) and time_step < max_seq_len:
dec_input = predicted_caption
log_probs = self.forward_dec(x, enc_input_num_pads, dec_input, dec_input_num_pads, apply_log_softmax=True)
prob_dist = torch.distributions.Categorical(torch.exp(log_probs[:, time_step]))
sampled_word_indexes = prob_dist.sample()
predicted_caption = torch.cat((predicted_caption, sampled_word_indexes.unsqueeze(-1)), dim=-1)
predicted_caption_prob = torch.cat((predicted_caption_prob,
log_probs[:, time_step].gather(index=sampled_word_indexes.unsqueeze(-1), dim=-1)), dim=-1)
time_step += 1
where_is_eos_vector = torch.min(where_is_eos_vector,
upperbound_vector.masked_fill(sampled_word_indexes == eos_vector, time_step))
finished_flag_vector = torch.max(finished_flag_vector,
(sampled_word_indexes == eos_vector).type(torch.IntTensor))
res_predicted_caption = []
for i in range(bs):
res_predicted_caption.append([])
for j in range(num_outputs):
index = i*num_outputs + j
res_predicted_caption[i].append(
predicted_caption[index, :where_is_eos_vector[index].item()+1].tolist())
where_is_eos_vector = where_is_eos_vector.unsqueeze(-1).expand(-1, time_step+1)
arange_tensor = torch.arange(time_step+1).unsqueeze(0).expand(bs * num_outputs, -1).to(self.rank)
predicted_caption_prob.masked_fill_(arange_tensor > where_is_eos_vector, 0.0)
res_predicted_caption_prob = predicted_caption_prob.reshape(bs, num_outputs, -1)
return res_predicted_caption, res_predicted_caption_prob