expansionnet-v2
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
141 lines
5.9 KiB
141 lines
5.9 KiB
# Copyright 2021 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import os
|
|
import pathlib
|
|
import pickle
|
|
from argparse import Namespace
|
|
|
|
import torch
|
|
import torchvision
|
|
from torchvision import transforms
|
|
from transformers import GPT2Tokenizer
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
from towhee.types.image_utils import to_pil
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
from towhee import register
|
|
from towhee.models import clip
|
|
|
|
class ExpansionNetV2(NNOperator):
|
|
"""
|
|
ExpansionNet V2 image captioning operator
|
|
"""
|
|
def __init__(self, model_name: str):
|
|
super().__init__()
|
|
path = str(pathlib.Path(__file__).parent)
|
|
sys.path.append(path)
|
|
from models.End_ExpansionNet_v2 import End_ExpansionNet_v2
|
|
from utils.language_utils import convert_vector_idx2word
|
|
self.convert_vector_idx2word = convert_vector_idx2word
|
|
sys.path.pop()
|
|
with open('{}/demo_coco_tokens.pickle'.format(path), 'rb') as f:
|
|
coco_tokens = pickle.load(f)
|
|
self.coco_tokens = coco_tokens
|
|
|
|
img_size = 384
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
drop_args = Namespace(enc=0.0,
|
|
dec=0.0,
|
|
enc_input=0.0,
|
|
dec_input=0.0,
|
|
other=0.0)
|
|
|
|
drop_args = Namespace(enc=0.0,
|
|
dec=0.0,
|
|
enc_input=0.0,
|
|
dec_input=0.0,
|
|
other=0.0)
|
|
model_args = Namespace(model_dim=512,
|
|
N_enc=3,
|
|
N_dec=3,
|
|
dropout=0.0,
|
|
drop_args=drop_args)
|
|
max_seq_len = 74
|
|
beam_size = 5
|
|
self.model = End_ExpansionNet_v2(swin_img_size=img_size, swin_patch_size=4, swin_in_chans=3,
|
|
swin_embed_dim=192, swin_depths=[2, 2, 18, 2], swin_num_heads=[6, 12, 24, 48],
|
|
swin_window_size=12, swin_mlp_ratio=4., swin_qkv_bias=True, swin_qk_scale=None,
|
|
swin_drop_rate=0.0, swin_attn_drop_rate=0.0, swin_drop_path_rate=0.0,
|
|
swin_norm_layer=torch.nn.LayerNorm, swin_ape=False, swin_patch_norm=True,
|
|
swin_use_checkpoint=False,
|
|
final_swin_dim=1536,
|
|
|
|
d_model=model_args.model_dim, N_enc=model_args.N_enc,
|
|
N_dec=model_args.N_dec, num_heads=8, ff=2048,
|
|
num_exp_enc_list=[32, 64, 128, 256, 512],
|
|
num_exp_dec=16,
|
|
output_word2idx=coco_tokens['word2idx_dict'],
|
|
output_idx2word=coco_tokens['idx2word_list'],
|
|
max_seq_len=max_seq_len, drop_args=model_args.drop_args,
|
|
rank='cpu')
|
|
|
|
cfg = self.model._configs()[model_name]
|
|
checkpoint = torch.load('{}/weights/{}'.format(cfg,cfg['weights']), map_location=torch.device('cpu'))
|
|
self.model.load_state_dict(checkpoint['model_state_dict'])
|
|
self.model.to(self.device)
|
|
|
|
self.transf_1 = torchvision.transforms.Compose([torchvision.transforms.Resize((img_size, img_size)), torchvision.transforms.ToTensor()])
|
|
self.transf_2 = torchvision.transforms.Compose([torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
|
|
self.beam_search_kwargs = {'beam_size': beam_size,
|
|
'beam_max_seq_len': max_seq_len,
|
|
'sample_or_max': 'max',
|
|
'how_many_outputs': 1,
|
|
'sos_idx': coco_tokens['word2idx_dict'][coco_tokens['sos_str']],
|
|
'eos_idx': coco_tokens['word2idx_dict'][coco_tokens['eos_str']]}
|
|
def _preprocess(self, img):
|
|
img = to_pil(img)
|
|
processed_img = self.transf_1(img)
|
|
processed_img = self.transf_2(processed_img)
|
|
processed_img = processed_img.to(self.device)
|
|
return processed_img
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
def inference_single_data(self, data):
|
|
text = self._inference_from_image(data)
|
|
return text
|
|
|
|
def __call__(self, data):
|
|
if not isinstance(data, list):
|
|
data = [data]
|
|
else:
|
|
data = data
|
|
results = []
|
|
for single_data in data:
|
|
result = self.inference_single_data(single_data)
|
|
results.append(result)
|
|
if len(data) == 1:
|
|
return results[0]
|
|
else:
|
|
return results
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
def _inference_from_image(self, img):
|
|
img = self._preprocess(img).unsqueeze(0)
|
|
with torch.no_grad():
|
|
pred, _ = self.model(enc_x=img,
|
|
enc_x_num_pads=[0],
|
|
mode='beam_search', **self.beam_search_kwargs)
|
|
pred = self.convert_vector_idx2word(pred[0][0], self.coco_tokens['idx2word_list'])[1:-1]
|
|
pred[-1] = pred[-1] + '.'
|
|
pred = ' '.join(pred).capitalize()
|
|
|
|
return pred
|
|
|
|
def _configs(self):
|
|
config = {}
|
|
config['expansionnet_rf'] = {}
|
|
config['expansionnet_rf']['weights'] = 'rf_model.pth'
|
|
return config
|