logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

241 lines
14 KiB

import torch
import torch.nn as nn
class CaptioningModel(nn.Module):
def __init__(self):
super(CaptioningModel, self).__init__()
# mandatory attributes
# rank: to enable multiprocessing
self.rank = None
def check_required_attributes(self):
if self.rank is None:
raise NotImplementedError("Subclass must assign the rank integer according to the GPU group")
def forward_enc(self, enc_input, enc_input_num_pads):
raise NotImplementedError
def forward_dec(self, cross_input, enc_input_num_pads, dec_input, dec_input_num_pads, apply_log_softmax=False):
raise NotImplementedError
def forward(self, enc_x, dec_x=None,
enc_x_num_pads=[0], dec_x_num_pads=[0], apply_log_softmax=False,
mode='forward', **kwargs):
if mode == 'forward':
x = self.forward_enc(enc_x, enc_x_num_pads)
y = self.forward_dec(x, enc_x_num_pads, dec_x, dec_x_num_pads, apply_log_softmax)
return y
else:
assert ('sos_idx' in kwargs.keys() or 'eos_idx' in kwargs.keys()), \
'sos and eos must be provided in case of batch sampling or beam search'
sos_idx = kwargs.get('sos_idx', -999)
eos_idx = kwargs.get('eos_idx', -999)
if mode == 'beam_search':
beam_size_arg = kwargs.get('beam_size', 5)
how_many_outputs_per_beam = kwargs.get('how_many_outputs', 1)
beam_max_seq_len = kwargs.get('beam_max_seq_len', 20)
sample_or_max = kwargs.get('sample_or_max', 'max')
out_classes, out_logprobs = self.beam_search(
enc_x, enc_x_num_pads,
beam_size=beam_size_arg,
sos_idx=sos_idx,
eos_idx=eos_idx,
how_many_outputs=how_many_outputs_per_beam,
max_seq_len=beam_max_seq_len,
sample_or_max=sample_or_max)
return out_classes, out_logprobs
if mode == 'sampling':
how_many_outputs = kwargs.get('how_many_outputs', 1)
sample_max_seq_len = kwargs.get('sample_max_seq_len', 20)
out_classes, out_logprobs = self.get_batch_multiple_sampled_prediction(
enc_x, enc_x_num_pads, num_outputs=how_many_outputs,
sos_idx=sos_idx, eos_idx=eos_idx,
max_seq_len=sample_max_seq_len)
return out_classes, out_logprobs
def get_batch_multiple_sampled_prediction(self, enc_input, enc_input_num_pads, num_outputs,
sos_idx, eos_idx, max_seq_len):
bs, enc_seq_len, _ = enc_input.shape
enc_input_num_pads = [enc_input_num_pads[i] for i in range(bs) for _ in range(num_outputs)]
x = self.forward_enc(enc_input=enc_input, enc_input_num_pads=enc_input_num_pads)
x = x.unsqueeze(1).expand(-1, num_outputs, -1, -1).reshape(bs * num_outputs, enc_seq_len, x.shape[-1])
upperbound_vector = torch.tensor([max_seq_len] * bs * num_outputs, dtype=torch.int).to(self.rank)
where_is_eos_vector = upperbound_vector.clone()
eos_vector = torch.tensor([eos_idx] * bs * num_outputs, dtype=torch.long).to(self.rank)
finished_flag_vector = torch.zeros(bs * num_outputs).type(torch.int)
predicted_caption = torch.tensor([sos_idx] * (bs * num_outputs), dtype=torch.long).to(self.rank).unsqueeze(-1)
predicted_caption_prob = torch.zeros(bs * num_outputs).to(self.rank).unsqueeze(-1)
dec_input_num_pads = [0]*(bs*num_outputs)
time_step = 0
while (finished_flag_vector.sum() != bs * num_outputs) and time_step < max_seq_len:
dec_input = predicted_caption
log_probs = self.forward_dec(x, enc_input_num_pads, dec_input, dec_input_num_pads, apply_log_softmax=True)
prob_dist = torch.distributions.Categorical(torch.exp(log_probs[:, time_step]))
sampled_word_indexes = prob_dist.sample()
predicted_caption = torch.cat((predicted_caption, sampled_word_indexes.unsqueeze(-1)), dim=-1)
predicted_caption_prob = torch.cat((predicted_caption_prob,
log_probs[:, time_step].gather(index=sampled_word_indexes.unsqueeze(-1), dim=-1)), dim=-1)
time_step += 1
where_is_eos_vector = torch.min(where_is_eos_vector,
upperbound_vector.masked_fill(sampled_word_indexes == eos_vector, time_step))
finished_flag_vector = torch.max(finished_flag_vector,
(sampled_word_indexes == eos_vector).type(torch.IntTensor))
# remove the elements that come after the first eos from the sequence
res_predicted_caption = []
for i in range(bs):
res_predicted_caption.append([])
for j in range(num_outputs):
index = i*num_outputs + j
res_predicted_caption[i].append(
predicted_caption[index, :where_is_eos_vector[index].item()+1].tolist())
where_is_eos_vector = where_is_eos_vector.unsqueeze(-1).expand(-1, time_step+1)
arange_tensor = torch.arange(time_step+1).unsqueeze(0).expand(bs * num_outputs, -1).to(self.rank)
predicted_caption_prob.masked_fill_(arange_tensor > where_is_eos_vector, 0.0)
res_predicted_caption_prob = predicted_caption_prob.reshape(bs, num_outputs, -1)
return res_predicted_caption, res_predicted_caption_prob
def beam_search(self, enc_input, enc_input_num_pads, sos_idx, eos_idx,
beam_size=3, how_many_outputs=1, max_seq_len=20, sample_or_max='max',):
assert (how_many_outputs <= beam_size), "requested output per sequence must be lower than beam width"
assert (sample_or_max == 'max' or sample_or_max == 'sample'), "argument must be chosen between \'max\' and \'sample\'"
bs = enc_input.shape[0]
cross_enc_output = self.forward_enc(enc_input, enc_input_num_pads)
# init: ------------------------------------------------------------------
init_dec_class = torch.tensor([sos_idx] * bs).unsqueeze(1).type(torch.long).to(self.rank)
init_dec_logprob = torch.tensor([0.0] * bs).unsqueeze(1).type(torch.float).to(self.rank)
log_probs = self.forward_dec(cross_input=cross_enc_output, enc_input_num_pads=enc_input_num_pads,
dec_input=init_dec_class, dec_input_num_pads=[0] * bs,
apply_log_softmax=True)
if sample_or_max == 'max':
_, topi = torch.topk(log_probs, k=beam_size, sorted=True)
else: # sample
topi = torch.exp(log_probs[:, 0, :]).multinomial(num_samples=beam_size, replacement=False)
topi = topi.unsqueeze(1)
init_dec_class = init_dec_class.repeat(1, beam_size)
init_dec_class = init_dec_class.unsqueeze(-1)
top_beam_size_class = topi.transpose(-2, -1)
init_dec_class = torch.cat((init_dec_class, top_beam_size_class), dim=-1)
init_dec_logprob = init_dec_logprob.repeat(1, beam_size)
init_dec_logprob = init_dec_logprob.unsqueeze(-1)
top_beam_size_logprob = log_probs.gather(dim=-1, index=topi)
top_beam_size_logprob = top_beam_size_logprob.transpose(-2, -1)
init_dec_logprob = torch.cat((init_dec_logprob, top_beam_size_logprob), dim=-1)
bs, enc_seq_len, d_model = cross_enc_output.shape
cross_enc_output = cross_enc_output.unsqueeze(1)
cross_enc_output = cross_enc_output.expand(-1, beam_size, -1, -1)
cross_enc_output = cross_enc_output.reshape(bs * beam_size, enc_seq_len, d_model).contiguous()
enc_input_num_pads = [enc_input_num_pads[i] for i in range(bs) for _ in range(beam_size)]
# loop: -----------------------------------------------------------------
loop_dec_classes = init_dec_class
loop_dec_logprobs = init_dec_logprob
loop_cumul_logprobs = loop_dec_logprobs.sum(dim=-1, keepdims=True)
loop_num_elem_vector = torch.tensor([2] * (bs * beam_size)).to(self.rank)
for time_step in range(2, max_seq_len):
loop_dec_classes = loop_dec_classes.reshape(bs * beam_size, time_step).contiguous()
log_probs = self.forward_dec(cross_input=cross_enc_output, enc_input_num_pads=enc_input_num_pads,
dec_input=loop_dec_classes,
dec_input_num_pads=(time_step-loop_num_elem_vector).tolist(),
apply_log_softmax=True)
if sample_or_max == 'max':
_, topi = torch.topk(log_probs[:, time_step-1, :], k=beam_size, sorted=True)
else: # sample
topi = torch.exp(log_probs[:, time_step-1, :]).multinomial(num_samples=beam_size,
replacement=False)
top_beam_size_word_classes = topi.reshape(bs, beam_size, beam_size)
top_beam_size_word_logprobs = log_probs[:, time_step-1, :].gather(dim=-1, index=topi)
top_beam_size_word_logprobs = top_beam_size_word_logprobs.reshape(bs, beam_size, beam_size)
# each sequence have now its best prediction, but some sequence may have already been terminated with EOS,
# in that case its candidates are simply ignored, and do not sum up in the "loop_dec_logprobs" their value
# are set to zero
there_is_eos_mask = (loop_dec_classes.view(bs, beam_size, time_step) == eos_idx). \
sum(dim=-1, keepdims=True).type(torch.bool)
# if we pad with -999 its candidates logprobabilities, also the sequence containing EOS would be
# straightforwardly discarded, instead we want to keep it in the exploration. Therefore we mask with 0.0
# one arbitrary candidate word probability so the sequence probability is unchanged but it
# can still be discarded when a better candidate sequence is found
top_beam_size_word_logprobs[:, :, 0:1].masked_fill_(there_is_eos_mask, 0.0)
top_beam_size_word_logprobs[:, :, 1:].masked_fill_(there_is_eos_mask, -999.0)
comparison_logprobs = loop_cumul_logprobs + top_beam_size_word_logprobs
comparison_logprobs = comparison_logprobs.contiguous().view(bs, beam_size * beam_size)
_, topi = torch.topk(comparison_logprobs, k=beam_size, sorted=True)
which_sequence = topi // beam_size
which_word = topi % beam_size
loop_dec_classes = loop_dec_classes.view(bs, beam_size, -1)
loop_dec_logprobs = loop_dec_logprobs.view(bs, beam_size, -1)
bs_idxes = torch.arange(bs).unsqueeze(-1)
new_loop_dec_classes = loop_dec_classes[[bs_idxes, which_sequence]]
new_loop_dec_logprobs = loop_dec_logprobs[[bs_idxes, which_sequence]]
which_sequence_top_beam_size_word_classes = top_beam_size_word_classes[[bs_idxes, which_sequence]]
which_sequence_top_beam_size_word_logprobs = top_beam_size_word_logprobs[
[bs_idxes, which_sequence]]
which_word = which_word.unsqueeze(-1)
lastword_top_beam_size_classes = which_sequence_top_beam_size_word_classes.gather(dim=-1,
index=which_word)
lastword_top_beam_size_logprobs = which_sequence_top_beam_size_word_logprobs.gather(dim=-1, index=which_word)
new_loop_dec_classes = torch.cat((new_loop_dec_classes, lastword_top_beam_size_classes), dim=-1)
new_loop_dec_logprobs = torch.cat((new_loop_dec_logprobs, lastword_top_beam_size_logprobs), dim=-1)
loop_dec_classes = new_loop_dec_classes
loop_dec_logprobs = new_loop_dec_logprobs
loop_cumul_logprobs = loop_dec_logprobs.sum(dim=-1, keepdims=True)
# -----------------------update loop_num_elem_vector ----------------------------
loop_num_elem_vector = loop_num_elem_vector.view(bs, beam_size)[[bs_idxes, which_sequence]].view(bs * beam_size)
there_was_eos_mask = (loop_dec_classes[:, :, :-1].view(bs, beam_size, time_step) == eos_idx). \
sum(dim=-1).type(torch.bool).view(bs * beam_size)
loop_num_elem_vector = loop_num_elem_vector + (1 * (1 - there_was_eos_mask.type(torch.int)))
if (loop_num_elem_vector != time_step + 1).sum() == (bs * beam_size):
break
# sort out the best result
loop_cumul_logprobs /= loop_num_elem_vector.reshape(bs, beam_size, 1)
_, topi = torch.topk(loop_cumul_logprobs.squeeze(-1), k=beam_size)
res_caption_pred = [[] for _ in range(bs)]
res_caption_logprob = [[] for _ in range(bs)]
for i in range(bs):
for j in range(how_many_outputs):
idx = topi[i, j].item()
res_caption_pred[i].append(
loop_dec_classes[i, idx, :loop_num_elem_vector[i * beam_size + idx]].tolist())
res_caption_logprob[i].append(loop_dec_logprobs[i, idx, :loop_num_elem_vector[i * beam_size + idx]])
flatted_res_caption_logprob = [logprobs for i in range(bs) for logprobs in res_caption_logprob[i]]
flatted_res_caption_logprob = torch.nn.utils.rnn.pad_sequence(flatted_res_caption_logprob, batch_first=True)
res_caption_logprob = flatted_res_caption_logprob.view(bs, how_many_outputs, -1)
return res_caption_pred, res_caption_logprob