data2vec
copied
6 changed files with 150 additions and 1 deletions
@ -1,2 +1,93 @@ |
|||
# data2vec-vision |
|||
# Image Embdding with data2vec |
|||
|
|||
*author: David Wang* |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Description |
|||
|
|||
This operator extracts features for image with [data2vec](https://arxiv.org/abs/2202.03555). The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. |
|||
|
|||
<br /> |
|||
|
|||
|
|||
## Code Example |
|||
|
|||
Load an image from path './towhee.jpg' to generate an image embedding. |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob('./towhee.jpg') \ |
|||
.image_decode.cv2() \ |
|||
.image_embedding.data2vec_vision(model_name='facebook/data2vec-vision-base-ft1k') \ |
|||
.show() |
|||
|
|||
``` |
|||
<img src="https://towhee.io/image-embedding/data2vec-vision/raw/branch/main/result1.png" alt="result1" style="height:20px;"/> |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob['path']('./towhee.jpg') \ |
|||
.image_decode.cv2['path', 'img']() \ |
|||
.image_embedding.data2vec_vision['img', 'vec'](model_name='facebook/data2vec-vision-base-ft1k') \ |
|||
.select['img', 'vec']() \ |
|||
.show() |
|||
``` |
|||
<img src="https://towhee.io/image-embedding/data2vec-vision/raw/branch/main/result2.png" alt="result2" style="height:60px;"/> |
|||
|
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***data2vec_vision(model_name='facebook/data2vec-vision-base')*** |
|||
|
|||
**Parameters:** |
|||
|
|||
|
|||
***model_name***: *str* |
|||
|
|||
The model name in string. |
|||
The default value is "facebook/data2vec-vision-base-ft1k". |
|||
|
|||
Supported model name: |
|||
- facebook/data2vec-vision-base-ft1k |
|||
- facebook/data2vec-vision-large-ft1k |
|||
|
|||
<br /> |
|||
|
|||
|
|||
|
|||
## Interface |
|||
|
|||
An image embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input. |
|||
It uses the pre-trained model specified by model name to generate an image embedding in ndarray. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* |
|||
|
|||
The decoded image data in towhee.types.Image (numpy.ndarray). |
|||
|
|||
|
|||
|
|||
**Returns:** *numpy.ndarray* |
|||
|
|||
The image embedding extracted by model. |
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,19 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .data2vec_vision import Data2VecVision |
|||
|
|||
|
|||
def data2vec_vision(model_name='facebook/data2vec-vision-base'): |
|||
return Data2VecVision(model_name) |
@ -0,0 +1,37 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
import numpy |
|||
import torch |
|||
import towhee |
|||
|
|||
from PIL import Image as PILImage |
|||
|
|||
from transformers import BeitFeatureExtractor, Data2VecVisionForImageClassification |
|||
from towhee.operator.base import NNOperator |
|||
from towhee.types.arg import arg, to_image_color |
|||
|
|||
class Data2VecVision(NNOperator): |
|||
def __init__(self, model_name='facebook/data2vec-vision-base'): |
|||
self.model = Data2VecVisionForImageClassification.from_pretrained(model_name) |
|||
self.feature_extractor = BeitFeatureExtractor.from_pretrained(model_name) |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def __call__(self, img: towhee._types.Image) -> numpy.ndarray: |
|||
img = PILImage.fromarray(img.astype('uint8'), 'RGB') |
|||
inputs = self.feature_extractor(img, return_tensors="pt") |
|||
with torch.no_grad(): |
|||
outputs = self.model.data2vec_vision(**inputs).pooler_output |
|||
|
|||
return outputs.detach().cpu().numpy().flatten() |
|||
|
@ -0,0 +1,2 @@ |
|||
numpy |
|||
transformers>4.19.0 |
After Width: | Height: | Size: 16 KiB |
After Width: | Height: | Size: 176 KiB |
Loading…
Reference in new issue