data2vec
copied
1 changed files with 78 additions and 3 deletions
@ -1,6 +1,81 @@ |
|||||
|
# Image Embedding with data2vec |
||||
|
|
||||
|
*author: David Wang* |
||||
|
|
||||
# More Resources |
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Description |
||||
|
|
||||
|
This operator extracts features for image with [data2vec](https://arxiv.org/abs/2202.03555). The core idea is to predict latent representations of the full input data based on a masked view of the input in a self-distillation setup using a standard Transformer architecture. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Load an image from path './towhee.jpg' to generate an image embedding. |
||||
|
|
||||
|
*Write a pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
from towhee import pipe, ops, DataCollection |
||||
|
|
||||
|
p = ( |
||||
|
pipe.input('path') |
||||
|
.map('path', 'img', ops.image_decode()) |
||||
|
.map('img', 'vec', ops.image_embedding.data2vec(model_name='facebook/data2vec-vision-base-ft1k')) |
||||
|
.output('img', 'vec') |
||||
|
) |
||||
|
|
||||
|
DataCollection(p('towhee.jpeg')).show() |
||||
|
``` |
||||
|
<img src="./result2.png" alt="result2" style="height:60px;"/> |
||||
|
|
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***data2vec(model_name='facebook/data2vec-vision-base')*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
|
||||
|
***model_name***: *str* |
||||
|
|
||||
|
The model name in string. |
||||
|
The default value is "facebook/data2vec-vision-base-ft1k". |
||||
|
|
||||
|
Supported model name: |
||||
|
- facebook/data2vec-vision-base-ft1k |
||||
|
- facebook/data2vec-vision-large-ft1k |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
|
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
An image embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input. |
||||
|
It uses the pre-trained model specified by model name to generate an image embedding in ndarray. |
||||
|
|
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* |
||||
|
|
||||
|
The decoded image data in towhee.types.Image (numpy.ndarray). |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns:** *numpy.ndarray* |
||||
|
|
||||
|
The image embedding extracted by model. |
||||
|
|
||||
|
Loading…
Reference in new issue