dolg
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
52 lines
1.8 KiB
52 lines
1.8 KiB
3 years ago
|
# Copyright 2021 Zilliz. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
|
||
|
import logging
|
||
|
import numpy
|
||
|
import towhee
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
from torchvision import transforms
|
||
|
from towhee.types.image_utils import to_pil
|
||
|
|
||
|
from towhee.operator.base import NNOperator, OperatorFlag
|
||
|
from towhee.types.arg import arg, to_image_color
|
||
|
from towhee import register
|
||
|
|
||
|
@register(output_schema=['vec'])
|
||
|
class Dolg(NNOperator):
|
||
|
"""
|
||
|
DOLG Embedding Operator
|
||
|
"""
|
||
|
def __init__(self, img_size, input_dim, hidden_dim, output_dim):
|
||
|
super().__init__()
|
||
|
sys.path.append(str(Path(__file__).parent))
|
||
|
from dolg_impl import DolgNet
|
||
|
self.model = DolgNet(img_size, input_dim, hidden_dim, output_dim)
|
||
|
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
||
|
std=[0.229, 0.224, 0.225])
|
||
|
self.tfms = transforms.Compose([transforms.Resize([img_size, img_size]),
|
||
|
transforms.ToTensor(),
|
||
|
normalize])
|
||
|
|
||
|
@arg(1, to_image_color('RGB'))
|
||
|
def __call__(self, img: numpy.ndarray):
|
||
|
img = self.tfms(to_pil(img)).unsqueeze(0)
|
||
|
self.model.eval()
|
||
|
features = self.model(img)
|
||
|
feature_vector = features.flatten().detach().numpy()
|
||
|
return feature_vector
|
||
|
|