dolg
copied
6 changed files with 283 additions and 1 deletions
@ -1,2 +1,84 @@ |
|||
# dolg |
|||
# Image Embdding with DOLG |
|||
|
|||
*author: David Wang* |
|||
|
|||
|
|||
|
|||
## Desription |
|||
|
|||
This operator extracts features for image with [DOLG](https://arxiv.org/abs/2108.02927) which has special design for image retrieval task. It integrates local and global information inside images into compact image representations. This operator is an adaptation from [dongkyuk/DOLG-pytorch](https://github.com/dongkyuk/DOLG-pytorch). |
|||
|
|||
## Code Example |
|||
|
|||
Load an image from path './towhee.jpg' to generate an image embedding. |
|||
|
|||
*Write the pipeline in simplified style*: |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob('./towhee.jpg') \ |
|||
.image_decode.cv2() \ |
|||
.image_embedding.dolg(img_size=512, input_dim=3, hidden_dim=1024, output_dim=2048) \ |
|||
.show() |
|||
|
|||
``` |
|||
<img src="https://towhee.io/image-embedding/dolg/raw/branch/main/result1.png" alt="result1" style="height:20px;"/> |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
towhee.glob['path']('./towhee.jpg') \ |
|||
.image_decode.cv2['path', 'img']() \ |
|||
.image_embedding.dolg['img', 'vec'](img_size=512, input_dim=3, hidden_dim=1024, output_dim=2048) \ |
|||
.select('img', 'vec') \ |
|||
.show() |
|||
``` |
|||
<img src="https://towhee.io/image-embedding/dolg/raw/branch/main/result2.png" alt="result2" style="height:60px;"/> |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***image_embedding.dolg(img_size=512, input_dim=3, hidden_dim=1024, output_dim=2048)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***img_size***: *int* |
|||
|
|||
Scaled input image size to extract embedding. The higher resolution would generate the more discriminateive feature but cost more time to calculate. |
|||
|
|||
***input_dim***: *int* |
|||
|
|||
The input dimension of DOLG module (equals pretrained cnn output dimension). |
|||
|
|||
***hidden_dim***: *int* |
|||
|
|||
The hidden dimension size, local feature branch output dimension. |
|||
|
|||
***output_dim***: *int* |
|||
|
|||
The output dimsion size, same as embedding size. |
|||
|
|||
## Interface |
|||
|
|||
An image embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input. |
|||
It uses the pre-trained model specified by model name to generate an image embedding in ndarray. |
|||
|
|||
|
|||
**Parameters:** |
|||
|
|||
***img***: *towhee.types.Image (a sub-class of numpy.ndarray)* |
|||
|
|||
The decoded image data in towhee.types.Image (numpy.ndarray). |
|||
|
|||
|
|||
|
|||
**Returns**: *numpy.ndarray* |
|||
|
|||
The image embedding extracted by model. |
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,19 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .dolg import Swintransformer |
|||
|
|||
def dolg(img_size=512, input_dim=3, hidden_dim=1024, output_dim=2048): |
|||
return Dolg(img_size, input_dim, hidden_dim, output_dim) |
|||
|
@ -0,0 +1,52 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
|
|||
import logging |
|||
import numpy |
|||
import towhee |
|||
import sys |
|||
from pathlib import Path |
|||
from torchvision import transforms |
|||
from towhee.types.image_utils import to_pil |
|||
|
|||
from towhee.operator.base import NNOperator, OperatorFlag |
|||
from towhee.types.arg import arg, to_image_color |
|||
from towhee import register |
|||
|
|||
@register(output_schema=['vec']) |
|||
class Dolg(NNOperator): |
|||
""" |
|||
DOLG Embedding Operator |
|||
""" |
|||
def __init__(self, img_size, input_dim, hidden_dim, output_dim): |
|||
super().__init__() |
|||
sys.path.append(str(Path(__file__).parent)) |
|||
from dolg_impl import DolgNet |
|||
self.model = DolgNet(img_size, input_dim, hidden_dim, output_dim) |
|||
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], |
|||
std=[0.229, 0.224, 0.225]) |
|||
self.tfms = transforms.Compose([transforms.Resize([img_size, img_size]), |
|||
transforms.Scale([img_size, img_size]), |
|||
transforms.ToTensor(), |
|||
normalize]) |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def __call__(self, img: numpy.ndarray): |
|||
img = self.tfms(to_pil(img)).unsqueeze(0) |
|||
self.model.eval() |
|||
features = self.model(img) |
|||
feature_vector = features.flatten().detach().numpy() |
|||
return feature_vector |
|||
|
@ -0,0 +1,129 @@ |
|||
import timm |
|||
import torch |
|||
import torch.nn as nn |
|||
import torch.nn.functional as F |
|||
import torch.optim as optim |
|||
|
|||
class GeM(nn.Module): |
|||
def __init__(self, p=3, eps=1e-6, requires_grad=False): |
|||
super(GeM, self).__init__() |
|||
self.p = nn.Parameter(torch.ones(1)*p, requires_grad=requires_grad) |
|||
self.eps = eps |
|||
|
|||
def forward(self, x): |
|||
return self.gem(x, p=self.p, eps=self.eps) |
|||
|
|||
def gem(self, x, p=3, eps=1e-6): |
|||
return F.avg_pool2d(x.clamp(min=eps).pow(p), (x.size(-2), x.size(-1))).pow(1./p) |
|||
|
|||
def __repr__(self): |
|||
return self.__class__.__name__ + '(' + 'p=' + '{:.4f}'.format(self.p.data.tolist()[0]) + ', ' + 'eps=' + str(self.eps) + ')' |
|||
|
|||
class MultiAtrous(nn.Module): |
|||
def __init__(self, in_channel, out_channel, size, dilation_rates=[3, 6, 9]): |
|||
super().__init__() |
|||
self.dilated_convs = [ |
|||
nn.Conv2d(in_channel, int(out_channel/4), |
|||
kernel_size=3, dilation=rate, padding=rate) |
|||
for rate in dilation_rates |
|||
] |
|||
self.gap_branch = nn.Sequential( |
|||
nn.AdaptiveAvgPool2d(1), |
|||
nn.Conv2d(in_channel, int(out_channel/4), kernel_size=1), |
|||
nn.ReLU(), |
|||
nn.Upsample(size=(size, size), mode='bilinear') |
|||
) |
|||
self.dilated_convs.append(self.gap_branch) |
|||
self.dilated_convs = nn.ModuleList(self.dilated_convs) |
|||
|
|||
def forward(self, x): |
|||
local_feat = [] |
|||
for dilated_conv in self.dilated_convs: |
|||
local_feat.append(dilated_conv(x)) |
|||
local_feat = torch.cat(local_feat, dim=1) |
|||
return local_feat |
|||
|
|||
|
|||
class DolgLocalBranch(nn.Module): |
|||
def __init__(self, img_size, in_channel, out_channel, hidden_channel=2048): |
|||
super().__init__() |
|||
self.multi_atrous = MultiAtrous(in_channel, hidden_channel, size=int(img_size/8)) |
|||
self.conv1x1_1 = nn.Conv2d(hidden_channel, out_channel, kernel_size=1) |
|||
self.conv1x1_2 = nn.Conv2d( |
|||
out_channel, out_channel, kernel_size=1, bias=False) |
|||
self.conv1x1_3 = nn.Conv2d(out_channel, out_channel, kernel_size=1) |
|||
|
|||
self.relu = nn.ReLU() |
|||
self.bn = nn.BatchNorm2d(out_channel) |
|||
self.softplus = nn.Softplus() |
|||
|
|||
def forward(self, x): |
|||
local_feat = self.multi_atrous(x) |
|||
|
|||
local_feat = self.conv1x1_1(local_feat) |
|||
local_feat = self.relu(local_feat) |
|||
local_feat = self.conv1x1_2(local_feat) |
|||
local_feat = self.bn(local_feat) |
|||
|
|||
attention_map = self.relu(local_feat) |
|||
attention_map = self.conv1x1_3(attention_map) |
|||
attention_map = self.softplus(attention_map) |
|||
|
|||
local_feat = F.normalize(local_feat, p=2, dim=1) |
|||
local_feat = local_feat * attention_map |
|||
|
|||
return local_feat |
|||
|
|||
class OrthogonalFusion(nn.Module): |
|||
def __init__(self): |
|||
super().__init__() |
|||
|
|||
def forward(self, local_feat, global_feat): |
|||
global_feat_norm = torch.norm(global_feat, p=2, dim=1) |
|||
projection = torch.bmm(global_feat.unsqueeze(1), torch.flatten( |
|||
local_feat, start_dim=2)) |
|||
projection = torch.bmm(global_feat.unsqueeze( |
|||
2), projection).view(local_feat.size()) |
|||
projection = projection / \ |
|||
(global_feat_norm * global_feat_norm).view(-1, 1, 1, 1) |
|||
orthogonal_comp = local_feat - projection |
|||
global_feat = global_feat.unsqueeze(-1).unsqueeze(-1) |
|||
return torch.cat([global_feat.expand(orthogonal_comp.size()), orthogonal_comp], dim=1) |
|||
|
|||
class DolgNet(nn.Module): |
|||
def __init__(self, img_size, input_dim, hidden_dim, output_dim): |
|||
super().__init__() |
|||
self.cnn = timm.create_model( |
|||
'tv_resnet101', |
|||
pretrained=True, |
|||
features_only=True, |
|||
in_chans=input_dim, |
|||
out_indices=(2, 3) |
|||
) |
|||
self.orthogonal_fusion = OrthogonalFusion() |
|||
self.local_branch = DolgLocalBranch(img_size, 512, hidden_dim) |
|||
self.gap = nn.AdaptiveAvgPool2d(1) |
|||
self.gem_pool = GeM() |
|||
self.fc_1 = nn.Linear(1024, hidden_dim) |
|||
self.fc_2 = nn.Linear(int(2*hidden_dim), output_dim) |
|||
# |
|||
# self.criterion = ArcFace( |
|||
# in_features=output_dim, |
|||
# out_features=num_of_classes, |
|||
# scale_factor=30, |
|||
# margin=0.15, |
|||
# criterion=nn.CrossEntropyLoss() |
|||
# ) |
|||
# |
|||
def forward(self, x): |
|||
output = self.cnn(x) |
|||
|
|||
local_feat = self.local_branch(output[0]) # ,hidden_channel,16,16 |
|||
global_feat = self.fc_1(self.gem_pool(output[1]).squeeze(3).squeeze(2)) # ,1024 |
|||
|
|||
feat = self.orthogonal_fusion(local_feat, global_feat) |
|||
feat = self.gap(feat).squeeze() |
|||
feat = self.fc_2(feat) |
|||
|
|||
return feat |
|||
|
After Width: | Height: | Size: 11 KiB |
After Width: | Height: | Size: 160 KiB |
Loading…
Reference in new issue