logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

102 lines
2.4 KiB

# Image Embdding with DOLG
*author: David Wang*
<br />
## Description
This operator extracts features for image with [DOLG](https://arxiv.org/abs/2108.02927) which has special design for image retrieval task. It integrates local and global information inside images into compact image representations. This operator is an adaptation from [dongkyuk/DOLG-pytorch](https://github.com/dongkyuk/DOLG-pytorch).
<br />
## Code Example
Load an image from path './towhee.jpg' to generate an image embedding.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.glob('./towhee.jpg') \
.image_decode.cv2() \
.image_embedding.dolg(img_size=512, input_dim=3, hidden_dim=1024, output_dim=2048) \
.show()
```
<img src="https://towhee.io/image-embedding/dolg/raw/branch/main/result1.png" alt="result1" style="height:20px;"/>
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('./towhee.jpg') \
.image_decode.cv2['path', 'img']() \
.image_embedding.dolg['img', 'vec'](img_size=512, input_dim=3, hidden_dim=1024, output_dim=2048) \
.select['img', 'vec']() \
.show()
```
<img src="https://towhee.io/image-embedding/dolg/raw/branch/main/result2.png" alt="result2" style="height:60px;"/>
<br />
## Factory Constructor
Create the operator via the following factory method
***image_embedding.dolg(img_size=512, input_dim=3, hidden_dim=1024, output_dim=2048)***
**Parameters:**
***img_size:*** *int*
​ Scaled input image size to extract embedding. The higher resolution would generate the more discriminateive feature but cost more time to calculate.
***input_dim:*** *int*
​ The input dimension of DOLG module (equals pretrained cnn output dimension).
***hidden_dim:*** *int*
​ The hidden dimension size, local feature branch output dimension.
***output_dim:*** *int*
​ The output dimsion size, same as embedding size.
<br />
## Interface
An image embedding operator takes a [towhee image](link/to/towhee/image/api/doc) as input.
It uses the pre-trained model specified by model name to generate an image embedding in ndarray.
**Parameters:**
***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)*
​ The decoded image data in towhee.types.Image (numpy.ndarray).
**Returns:** *numpy.ndarray*
​ The image embedding extracted by model.
3 years ago