logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

130 lines
4.6 KiB

import timm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class GeM(nn.Module):
def __init__(self, p=3, eps=1e-6, requires_grad=False):
super(GeM, self).__init__()
self.p = nn.Parameter(torch.ones(1)*p, requires_grad=requires_grad)
self.eps = eps
def forward(self, x):
return self.gem(x, p=self.p, eps=self.eps)
def gem(self, x, p=3, eps=1e-6):
return F.avg_pool2d(x.clamp(min=eps).pow(p), (x.size(-2), x.size(-1))).pow(1./p)
def __repr__(self):
return self.__class__.__name__ + '(' + 'p=' + '{:.4f}'.format(self.p.data.tolist()[0]) + ', ' + 'eps=' + str(self.eps) + ')'
class MultiAtrous(nn.Module):
def __init__(self, in_channel, out_channel, size, dilation_rates=[3, 6, 9]):
super().__init__()
self.dilated_convs = [
nn.Conv2d(in_channel, int(out_channel/4),
kernel_size=3, dilation=rate, padding=rate)
for rate in dilation_rates
]
self.gap_branch = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channel, int(out_channel/4), kernel_size=1),
nn.ReLU(),
nn.Upsample(size=(size, size), mode='bilinear')
)
self.dilated_convs.append(self.gap_branch)
self.dilated_convs = nn.ModuleList(self.dilated_convs)
def forward(self, x):
local_feat = []
for dilated_conv in self.dilated_convs:
local_feat.append(dilated_conv(x))
local_feat = torch.cat(local_feat, dim=1)
return local_feat
class DolgLocalBranch(nn.Module):
def __init__(self, img_size, in_channel, out_channel, hidden_channel=2048):
super().__init__()
self.multi_atrous = MultiAtrous(in_channel, hidden_channel, size=int(img_size/8))
self.conv1x1_1 = nn.Conv2d(hidden_channel, out_channel, kernel_size=1)
self.conv1x1_2 = nn.Conv2d(
out_channel, out_channel, kernel_size=1, bias=False)
self.conv1x1_3 = nn.Conv2d(out_channel, out_channel, kernel_size=1)
self.relu = nn.ReLU()
self.bn = nn.BatchNorm2d(out_channel)
self.softplus = nn.Softplus()
def forward(self, x):
local_feat = self.multi_atrous(x)
local_feat = self.conv1x1_1(local_feat)
local_feat = self.relu(local_feat)
local_feat = self.conv1x1_2(local_feat)
local_feat = self.bn(local_feat)
attention_map = self.relu(local_feat)
attention_map = self.conv1x1_3(attention_map)
attention_map = self.softplus(attention_map)
local_feat = F.normalize(local_feat, p=2, dim=1)
local_feat = local_feat * attention_map
return local_feat
class OrthogonalFusion(nn.Module):
def __init__(self):
super().__init__()
def forward(self, local_feat, global_feat):
global_feat_norm = torch.norm(global_feat, p=2, dim=1)
projection = torch.bmm(global_feat.unsqueeze(1), torch.flatten(
local_feat, start_dim=2))
projection = torch.bmm(global_feat.unsqueeze(
2), projection).view(local_feat.size())
projection = projection / \
(global_feat_norm * global_feat_norm).view(-1, 1, 1, 1)
orthogonal_comp = local_feat - projection
global_feat = global_feat.unsqueeze(-1).unsqueeze(-1)
return torch.cat([global_feat.expand(orthogonal_comp.size()), orthogonal_comp], dim=1)
class DolgNet(nn.Module):
def __init__(self, img_size, input_dim, hidden_dim, output_dim):
super().__init__()
self.cnn = timm.create_model(
'tv_resnet101',
pretrained=True,
features_only=True,
in_chans=input_dim,
out_indices=(2, 3)
)
self.orthogonal_fusion = OrthogonalFusion()
self.local_branch = DolgLocalBranch(img_size, 512, hidden_dim)
self.gap = nn.AdaptiveAvgPool2d(1)
self.gem_pool = GeM()
self.fc_1 = nn.Linear(1024, hidden_dim)
self.fc_2 = nn.Linear(int(2*hidden_dim), output_dim)
#
# self.criterion = ArcFace(
# in_features=output_dim,
# out_features=num_of_classes,
# scale_factor=30,
# margin=0.15,
# criterion=nn.CrossEntropyLoss()
# )
#
def forward(self, x):
output = self.cnn(x)
local_feat = self.local_branch(output[0]) # ,hidden_channel,16,16
global_feat = self.fc_1(self.gem_pool(output[1]).squeeze(3).squeeze(2)) # ,1024
feat = self.orthogonal_fusion(local_feat, global_feat)
feat = self.gap(feat).squeeze()
feat = self.fc_2(feat)
return feat