The default pretrained model weights are from [The 1st Place Solution of ISC21 (Descriptor Track)](https://github.com/lyakaap/ISC21-Descriptor-Track-1st).
- metadata_dict: {'help': 'If true, use all gpu in your machine, else use only one gpu.'}
- gpu
- default: 0
- metadata_dict: {'help': 'When distributed is False, use this gpu No. in your machine.'}
- start_epoch
- default: 0
- metadata_dict: {'help': 'Start epoch number.'}
- epochs
- default: 6
- metadata_dict: {'help': 'End epoch number.'}
- batch_size
- default: 128
- metadata_dict: {'help': 'Total batch size in all gpu.'}
- init_lr
- default: 0.1
- metadata_dict: {'help': 'init learning rate in SGD.'}
- train_data_dir
- default: None
- metadata_dict: {'help': 'The dir containing all training data image files.'}
### Your custom training
Your can change [training script](https://towhee.io/image-embedding/isc/src/branch/main/train_isc.py) in your way.
Or your can refer to the [original repo](https://github.com/lyakaap/ISC21-Descriptor-Track-1st) and [paper](https://arxiv.org/abs/2112.04323) to learn more about contrastive learning and image instance retrieval.