|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import os
|
|
|
|
import warnings
|
|
|
|
from typing import Union, List
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
import towhee
|
|
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
|
|
from towhee import register
|
|
|
|
from towhee.models import isc
|
|
|
|
import sys
|
|
|
|
# from towhee.dc2 import accelerate
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
from PIL import Image as PILImage
|
|
|
|
from timm.data import create_transform
|
|
|
|
from timm import create_model
|
|
|
|
|
|
|
|
try:
|
|
|
|
from timm.models import get_pretrained_cfg
|
|
|
|
except ImportError:
|
|
|
|
from timm.models.registry import _model_default_cfgs
|
|
|
|
def get_pretrained_cfg(model_name):
|
|
|
|
return _model_default_cfgs[model_name]
|
|
|
|
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
log = logging.getLogger('isc_op')
|
|
|
|
_ = sys.modules[__name__]
|
|
|
|
|
|
|
|
|
|
|
|
# @accelerate
|
|
|
|
class Model:
|
|
|
|
def __init__(self, timm_backbone, checkpoint_path, device):
|
|
|
|
self.device = device
|
|
|
|
self.backbone = create_model(timm_backbone, features_only=True, pretrained=False)
|
|
|
|
self.model = isc.create_model(pretrained=True, checkpoint_path=checkpoint_path, device=self.device,
|
|
|
|
backbone=self.backbone, p=1.0, eval_p=1.0)
|
|
|
|
self.model.eval()
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
x = x.to(self.device)
|
|
|
|
return self.model(x)
|
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class Isc(NNOperator):
|
|
|
|
"""
|
|
|
|
The operator uses pretrained ISC model to extract features for an image input.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
skip_preprocess (`bool = False`):
|
|
|
|
Whether skip image transforms.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
timm_backbone: str = 'tf_efficientnetv2_m_in21ft1k',
|
|
|
|
img_size: int = 512,
|
|
|
|
checkpoint_path: str = None,
|
|
|
|
skip_preprocess: bool = False,
|
|
|
|
device: str = None) -> None:
|
|
|
|
super().__init__()
|
|
|
|
if device is None:
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
self.device = device
|
|
|
|
self.skip_tfms = skip_preprocess
|
|
|
|
self.timm_backbone = timm_backbone
|
|
|
|
|
|
|
|
if checkpoint_path is None:
|
|
|
|
checkpoint_path = os.path.join(str(Path(__file__).parent), 'checkpoints', timm_backbone + '.pth')
|
|
|
|
|
|
|
|
self.model = Model(self.timm_backbone, checkpoint_path, self.device)
|
|
|
|
|
|
|
|
self.tfms = create_transform(
|
|
|
|
input_size=img_size,
|
|
|
|
interpolation=self.config['interpolation'],
|
|
|
|
mean=self.config['mean'],
|
|
|
|
std=self.config['std'],
|
|
|
|
crop_pct=self.config['crop_pct']
|
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(self, data: Union[List['towhee.types.Image'], 'towhee.types.Image']):
|
|
|
|
if not isinstance(data, list):
|
|
|
|
imgs = [data]
|
|
|
|
else:
|
|
|
|
imgs = data
|
|
|
|
|
|
|
|
img_list = []
|
|
|
|
for img in imgs:
|
|
|
|
img = self.convert_img(img)
|
|
|
|
img = img if self.skip_tfms else self.tfms(img)
|
|
|
|
img_list.append(img)
|
|
|
|
inputs = torch.stack(img_list)
|
|
|
|
inputs = inputs.to(self.device)
|
|
|
|
features = self.model(inputs)
|
|
|
|
features = features.to('cpu')
|
|
|
|
|
|
|
|
if isinstance(data, list):
|
|
|
|
vecs = list(features.detach().numpy())
|
|
|
|
else:
|
|
|
|
vecs = features.squeeze(0).detach().numpy()
|
|
|
|
return vecs
|
|
|
|
|
|
|
|
@property
|
|
|
|
def _model(self):
|
|
|
|
return self.model.model
|
|
|
|
|
|
|
|
@property
|
|
|
|
def config(self):
|
|
|
|
config = get_pretrained_cfg(self.timm_backbone)
|
|
|
|
return config
|
|
|
|
|
|
|
|
def save_model(self, format: str = 'pytorch', path: str = 'default'):
|
|
|
|
if path == 'default':
|
|
|
|
path = str(Path(__file__).parent)
|
|
|
|
path = os.path.join(path, 'saved', format)
|
|
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
name = self.timm_backbone.replace('/', '-')
|
|
|
|
path = os.path.join(path, name)
|
|
|
|
if format in ['pytorch', 'torchscript']:
|
|
|
|
path = path + '.pt'
|
|
|
|
elif format == 'onnx':
|
|
|
|
path = path + '.onnx'
|
|
|
|
else:
|
|
|
|
raise ValueError(f'Invalid format {format}.')
|
|
|
|
dummy_input = torch.rand(1, 3, 224, 224).to(self.device)
|
|
|
|
if format == 'pytorch':
|
|
|
|
torch.save(self._model, path)
|
|
|
|
elif format == 'torchscript':
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
jit_model = torch.jit.script(self._model)
|
|
|
|
except Exception:
|
|
|
|
jit_model = torch.jit.trace(self._model, dummy_input, strict=False)
|
|
|
|
torch.jit.save(jit_model, path)
|
|
|
|
except Exception as e:
|
|
|
|
log.error(f'Fail to save as torchscript: {e}.')
|
|
|
|
raise RuntimeError(f'Fail to save as torchscript: {e}.')
|
|
|
|
elif format == 'onnx':
|
|
|
|
try:
|
|
|
|
torch.onnx.export(self._model,
|
|
|
|
dummy_input,
|
|
|
|
path,
|
|
|
|
input_names=['input_0'],
|
|
|
|
output_names=['output_0'],
|
|
|
|
opset_version=14,
|
|
|
|
dynamic_axes={
|
|
|
|
'input_0': {0: 'batch_size', 2: 'height', 3: 'width'},
|
|
|
|
'output_0': {0: 'batch_size', 1: 'dim'}
|
|
|
|
},
|
|
|
|
do_constant_folding=True
|
|
|
|
)
|
|
|
|
except Exception as e:
|
|
|
|
log.error(f'Fail to save as onnx: {e}.')
|
|
|
|
raise RuntimeError(f'Fail to save as onnx: {e}.')
|
|
|
|
# todo: elif format == 'tensorrt':
|
|
|
|
else:
|
|
|
|
log.error(f'Unsupported format "{format}".')
|
|
|
|
return path
|
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def convert_img(self, img: towhee._types.Image):
|
|
|
|
img = PILImage.fromarray(img.astype('uint8'), 'RGB')
|
|
|
|
return img
|
|
|
|
|
|
|
|
@property
|
|
|
|
def supported_formats(self):
|
|
|
|
return ['onnx']
|
|
|
|
|
|
|
|
def train(self, training_config=None,
|
|
|
|
train_dataset=None,
|
|
|
|
eval_dataset=None,
|
|
|
|
resume_checkpoint_path=None, **kwargs):
|
|
|
|
from .train_isc import train_isc
|
|
|
|
training_args = kwargs.pop('training_args', None)
|
|
|
|
train_isc(self._model, training_args)
|
|
|
|
|
|
|
|
# if __name__ == '__main__':
|
|
|
|
# from towhee import ops
|
|
|
|
#
|
|
|
|
# path = 'https://github.com/towhee-io/towhee/raw/main/towhee_logo.png'
|
|
|
|
#
|
|
|
|
# decoder = ops.image_decode.cv2()
|
|
|
|
# img = decoder(path)
|
|
|
|
#
|
|
|
|
# op = Isc()
|
|
|
|
# out = op(img)
|
|
|
|
# assert out.shape == (256,)
|