isc
copied
Jael Gu
2 years ago
5 changed files with 220 additions and 1 deletions
@ -1,2 +1,88 @@ |
|||||
# isc |
|
||||
|
# Image Embedding with ISC |
||||
|
|
||||
|
*author: Jael Gu* |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Desription |
||||
|
|
||||
|
An image embedding operator generates a vector given an image. |
||||
|
This operator extracts features for image top ranked models from |
||||
|
[Image Similarity Challenge 2021](https://github.com/facebookresearch/isc2021) - Descriptor Track. |
||||
|
The default pretrained model weights are from [The 1st Place Solution of ISC21 (Descriptor Track)](https://github.com/lyakaap/ISC21-Descriptor-Track-1st). |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Code Example |
||||
|
|
||||
|
Load an image from path './towhee.jpg' |
||||
|
and use the pretrained ISC model ('resnet50') to generate an image embedding. |
||||
|
|
||||
|
*Write the pipeline in simplified style:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob('./towhee.jpg') \ |
||||
|
.image_decode() \ |
||||
|
.image_embedding.isc() \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="./result1.png" height="50px"/> |
||||
|
|
||||
|
*Write a same pipeline with explicit inputs/outputs name specifications:* |
||||
|
|
||||
|
```python |
||||
|
import towhee |
||||
|
|
||||
|
towhee.glob['path']('./towhee.jpg') \ |
||||
|
.image_decode['path', 'img']() \ |
||||
|
.image_embedding.isc['img', 'vec']() \ |
||||
|
.select['img', 'vec']() \ |
||||
|
.show() |
||||
|
``` |
||||
|
<img src="./result2.png" height="150px"/> |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Factory Constructor |
||||
|
|
||||
|
Create the operator via the following factory method |
||||
|
|
||||
|
***image_embedding.isc(skip_preprocess=False, device=None)*** |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***skip_preprocess:*** *bool* |
||||
|
|
||||
|
The flag to control whether to skip image preprocess. |
||||
|
The default value is False. |
||||
|
If set to True, it will skip image preprocessing steps (transforms). |
||||
|
In this case, input image data must be prepared in advance in order to properly fit the model. |
||||
|
|
||||
|
***device:*** *str* |
||||
|
|
||||
|
The device to run this operator, defaults to None. |
||||
|
When it is None, 'cuda' will be used if it is available, otherwise 'cpu' is used. |
||||
|
|
||||
|
<br /> |
||||
|
|
||||
|
## Interface |
||||
|
|
||||
|
An image embedding operator takes a towhee image as input. |
||||
|
It uses the pre-trained model specified by model name to generate an image embedding in ndarray. |
||||
|
|
||||
|
**Parameters:** |
||||
|
|
||||
|
***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* |
||||
|
|
||||
|
The decoded image data in numpy.ndarray. |
||||
|
|
||||
|
|
||||
|
|
||||
|
**Returns:** *numpy.ndarray* |
||||
|
|
||||
|
The image embedding extracted by model. |
||||
|
|
||||
|
|
||||
|
|
||||
|
@ -0,0 +1,19 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
from .isc import Isc |
||||
|
|
||||
|
|
||||
|
def isc(**kwargs): |
||||
|
return Isc(**kwargs) |
Binary file not shown.
@ -0,0 +1,108 @@ |
|||||
|
# Copyright 2021 Zilliz. All rights reserved. |
||||
|
# |
||||
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
||||
|
# you may not use this file except in compliance with the License. |
||||
|
# You may obtain a copy of the License at |
||||
|
# |
||||
|
# http://www.apache.org/licenses/LICENSE-2.0 |
||||
|
# |
||||
|
# Unless required by applicable law or agreed to in writing, software |
||||
|
# distributed under the License is distributed on an "AS IS" BASIS, |
||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
||||
|
# See the License for the specific language governing permissions and |
||||
|
# limitations under the License. |
||||
|
|
||||
|
import logging |
||||
|
import os |
||||
|
import numpy |
||||
|
from typing import Union, List |
||||
|
from pathlib import Path |
||||
|
|
||||
|
import towhee |
||||
|
from towhee.operator.base import NNOperator, OperatorFlag |
||||
|
from towhee.types.arg import arg, to_image_color |
||||
|
from towhee import register |
||||
|
from towhee.models import isc |
||||
|
|
||||
|
import torch |
||||
|
from torch import nn |
||||
|
from torchvision import transforms |
||||
|
from PIL import Image as PILImage |
||||
|
import timm |
||||
|
|
||||
|
import warnings |
||||
|
|
||||
|
warnings.filterwarnings('ignore') |
||||
|
log = logging.getLogger() |
||||
|
|
||||
|
|
||||
|
@register(output_schema=['vec']) |
||||
|
class Isc(NNOperator): |
||||
|
""" |
||||
|
The operator uses pretrained ISC model to extract features for an image input. |
||||
|
|
||||
|
Args: |
||||
|
skip_preprocess (`bool = False`): |
||||
|
Whether skip image transforms. |
||||
|
""" |
||||
|
|
||||
|
def __init__(self, timm_backbone: str = 'tf_efficientnetv2_m_in21ft1k', |
||||
|
skip_preprocess: bool = False, checkpoint_path: str = None, device: str = None) -> None: |
||||
|
super().__init__() |
||||
|
if device is None: |
||||
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
||||
|
self.device = device |
||||
|
self.skip_tfms = skip_preprocess |
||||
|
if checkpoint_path is None: |
||||
|
checkpoint_path = os.path.join(str(Path(__file__).parent), 'checkpoints', timm_backbone + '.pth') |
||||
|
|
||||
|
backbone = timm.create_model(timm_backbone, features_only=True, pretrained=True) |
||||
|
self.model = isc.create_model(pretrained=True, checkpoint_path=checkpoint_path, device=self.device, |
||||
|
backbone=backbone, p=3.0, eval_p=1.0) |
||||
|
self.model.eval() |
||||
|
|
||||
|
self.tfms = transforms.Compose([ |
||||
|
transforms.Resize((512, 512)), |
||||
|
transforms.ToTensor(), |
||||
|
transforms.Normalize(mean=backbone.default_cfg['mean'], |
||||
|
std=backbone.default_cfg['std']) |
||||
|
]) |
||||
|
|
||||
|
def __call__(self, data: Union[List[towhee._types.Image], towhee._types.Image]): |
||||
|
if not isinstance(data, list): |
||||
|
imgs = [data] |
||||
|
else: |
||||
|
imgs = data |
||||
|
img_list = [] |
||||
|
for img in imgs: |
||||
|
img = self.convert_img(img) |
||||
|
img = img if self.skip_tfms else self.tfms(img) |
||||
|
img_list.append(img) |
||||
|
inputs = torch.stack(img_list) |
||||
|
inputs = inputs.to(self.device) |
||||
|
features = self.model(inputs) |
||||
|
features = features.to('cpu').flatten(1) |
||||
|
|
||||
|
if isinstance(data, list): |
||||
|
vecs = list(features.detach().numpy()) |
||||
|
else: |
||||
|
vecs = features.squeeze(0).detach().numpy() |
||||
|
return vecs |
||||
|
|
||||
|
@arg(1, to_image_color('RGB')) |
||||
|
def convert_img(self, img: towhee._types.Image): |
||||
|
img = PILImage.fromarray(img.astype('uint8'), 'RGB') |
||||
|
return img |
||||
|
|
||||
|
|
||||
|
# if __name__ == '__main__': |
||||
|
# from towhee import ops |
||||
|
# |
||||
|
# path = 'https://github.com/towhee-io/towhee/raw/main/towhee_logo.png' |
||||
|
# |
||||
|
# decoder = ops.image_decode.cv2() |
||||
|
# img = decoder(path) |
||||
|
# |
||||
|
# op = Isc() |
||||
|
# out = op(img) |
||||
|
# assert out.shape == (256,) |
@ -0,0 +1,3 @@ |
|||||
|
numpy |
||||
|
torchvision |
||||
|
timm>=0.5.4 |
Loading…
Reference in new issue