swag
copied
6 changed files with 302 additions and 1 deletions
@ -1,2 +1,98 @@ |
|||
# swag |
|||
# Image Embedding with SWAG |
|||
|
|||
*author: [Jael Gu](https://github.com/jaelgu* |
|||
|
|||
<br /> |
|||
|
|||
## Description |
|||
|
|||
An image embedding operator generates a vector given an image. |
|||
This operator extracts features for image with pretrained [SWAG](https://github.com/facebookresearch/SWAG) models from [Torch Hub](https://pytorch.org/docs/stable/hub.html). |
|||
SWAG implements models from the paper [Revisiting Weakly Supervised Pre-Training of Visual Perception Models](https://arxiv.org/abs/2201.08371). |
|||
To achieve higher accuracy in image classification, SWAG uses hashtags to perform weakly supervised learning instead of fully supervised pretraining with image class labels. |
|||
|
|||
<br /> |
|||
|
|||
## Code Example |
|||
|
|||
Load an image from path './towhee.jpg' |
|||
and use the pretrained SWAG model 'vit_b16_in1k' to generate an image embedding. |
|||
|
|||
*Write the pipeline in simplified style:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
( |
|||
towhee.glob('./towhee.jpg') |
|||
.image_decode() |
|||
.image_embedding.swag(model_name='vit_b16_in1k') |
|||
.show() |
|||
) |
|||
``` |
|||
<img src="./result1.png" width="800px"/> |
|||
|
|||
*Write a same pipeline with explicit inputs/outputs name specifications:* |
|||
|
|||
```python |
|||
import towhee |
|||
|
|||
( |
|||
towhee.glob['path']('./towhee.jpg') |
|||
.image_decode['path', 'img']() |
|||
.image_embedding.swag['img', 'vec'](model_name='vit_b16_in1k') |
|||
.select['img', 'vec']() |
|||
.show() |
|||
) |
|||
``` |
|||
<img src="./result2.png" width="800px"/> |
|||
|
|||
<br /> |
|||
|
|||
## Factory Constructor |
|||
|
|||
Create the operator via the following factory method |
|||
|
|||
***image_embedding.swag(model_name='vit_b16_in1k', skip_preprocess=False)*** |
|||
|
|||
**Parameters:** |
|||
|
|||
***model_name:*** *str* |
|||
|
|||
The model name in string. The default value is "vit_b16_in1k". |
|||
Supported model names: |
|||
- vit_b16_in1k |
|||
- vit_l16_in1k |
|||
- vit_h14_in1k |
|||
- regnety_16gf_in1k |
|||
- regnety_32gf_in1k |
|||
- regnety_128gf_in1k |
|||
|
|||
***skip_preprocess:*** *bool* |
|||
|
|||
The flag to control whether to skip image preprocess. |
|||
The default value is False. |
|||
If set to True, it will skip image preprocessing steps (transforms). |
|||
In this case, input image data must be prepared in advance in order to properly fit the model. |
|||
|
|||
<br /> |
|||
|
|||
## Interface |
|||
|
|||
An image embedding operator takes a towhee image as input. |
|||
It uses the pre-trained model specified by model name to generate an image embedding in ndarray. |
|||
|
|||
**Parameters:** |
|||
|
|||
***img:*** *towhee.types.Image (a sub-class of numpy.ndarray)* |
|||
|
|||
The decoded image data in numpy.ndarray. |
|||
|
|||
|
|||
|
|||
**Returns:** *numpy.ndarray* |
|||
|
|||
The image embedding extracted by model. |
|||
|
|||
|
|||
|
|||
|
@ -0,0 +1,19 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
from .swag import Swag |
|||
|
|||
|
|||
def swag(**kwargs): |
|||
return Swag(**kwargs) |
@ -0,0 +1,5 @@ |
|||
numpy |
|||
pillow |
|||
towhee>=0.6.1 |
|||
torch>=1.8.0 |
|||
torchvision>=0.9.0 |
After Width: | Height: | Size: 3.9 KiB |
After Width: | Height: | Size: 81 KiB |
@ -0,0 +1,181 @@ |
|||
# Copyright 2021 Zilliz. All rights reserved. |
|||
# |
|||
# Licensed under the Apache License, Version 2.0 (the "License"); |
|||
# you may not use this file except in compliance with the License. |
|||
# You may obtain a copy of the License at |
|||
# |
|||
# http://www.apache.org/licenses/LICENSE-2.0 |
|||
# |
|||
# Unless required by applicable law or agreed to in writing, software |
|||
# distributed under the License is distributed on an "AS IS" BASIS, |
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|||
# See the License for the specific language governing permissions and |
|||
# limitations under the License. |
|||
|
|||
import logging |
|||
import numpy |
|||
import os |
|||
from pathlib import Path |
|||
|
|||
import towhee |
|||
from towhee.operator.base import NNOperator, OperatorFlag |
|||
from towhee.types.arg import arg, to_image_color |
|||
from towhee import register |
|||
|
|||
import torch |
|||
from torch import nn |
|||
from torchvision import transforms |
|||
|
|||
from PIL import Image as PILImage |
|||
|
|||
import warnings |
|||
|
|||
warnings.filterwarnings('ignore') |
|||
log = logging.getLogger() |
|||
|
|||
|
|||
@register(output_schema=['vec']) |
|||
class Swag(NNOperator): |
|||
""" |
|||
Pytorch image embedding operator that uses the Pytorch Image Model (timm) collection. |
|||
Args: |
|||
model_name (`str`): |
|||
Which model to use for the embeddings. |
|||
skip_preprocess (`bool = False`): |
|||
Whether skip image transforms. |
|||
""" |
|||
|
|||
def __init__(self, model_name: str, skip_preprocess: bool = False) -> None: |
|||
super().__init__() |
|||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|||
|
|||
self.skip_tfms = skip_preprocess |
|||
self.tfms = self.get_transforms(model_name) |
|||
|
|||
self.model_name = model_name |
|||
self.model = torch.hub.load("facebookresearch/swag", model=model_name) |
|||
self.model.to(self.device) |
|||
self.model.eval() |
|||
self.extract_features = FeatureExtractor(self.model) |
|||
|
|||
@arg(1, to_image_color('RGB')) |
|||
def __call__(self, img: towhee._types.Image) -> numpy.ndarray: |
|||
img = PILImage.fromarray(img.astype('uint8'), 'RGB') |
|||
if not self.skip_tfms: |
|||
img = self.tfms(img).unsqueeze(0) |
|||
img = img.to(self.device) |
|||
features, _ = self.extract_features(img) |
|||
if features.dim() == 4: |
|||
global_pool = nn.AdaptiveAvgPool2d(1) |
|||
features = global_pool(features) |
|||
|
|||
features = features.to('cpu') |
|||
vec = features.flatten().detach().numpy() |
|||
return vec |
|||
|
|||
def save_model(self, format: str = 'pytorch', path: str = 'default'): |
|||
if path == 'default': |
|||
path = str(Path(__file__).parent) |
|||
name = self.model_name.replace('/', '-') |
|||
path = os.path.join(path, name) |
|||
inputs = torch.ones(1, 3, 224, 224) |
|||
if format == 'pytorch': |
|||
torch.save(self.model, path) |
|||
elif format == 'torchscript': |
|||
path = path + '.pt' |
|||
try: |
|||
try: |
|||
jit_model = torch.jit.script(self.model) |
|||
except Exception: |
|||
jit_model = torch.jit.trace(self.model, inputs, strict=False) |
|||
torch.jit.save(jit_model, path) |
|||
except Exception as e: |
|||
log.error(f'Fail to save as torchscript: {e}.') |
|||
raise RuntimeError(f'Fail to save as torchscript: {e}.') |
|||
elif format == 'onxx': |
|||
pass # todo |
|||
else: |
|||
log.error(f'Save model: unsupported format "{format}".') |
|||
|
|||
@staticmethod |
|||
def supported_model_names(format: str = None): |
|||
full_list = [ |
|||
'vit_h14_in1k', |
|||
'vit_l16_in1k', |
|||
'vit_b16_in1k', |
|||
'regnety_16gf_in1k', |
|||
'regnety_32gf_in1k', |
|||
'regnety_128gf_in1k', |
|||
] |
|||
full_list.sort() |
|||
if format is None: |
|||
model_list = full_list |
|||
elif format == 'pytorch': |
|||
to_remove = [] |
|||
assert set(to_remove).issubset(set(full_list)) |
|||
model_list = list(set(full_list) - set(to_remove)) |
|||
else: # todo: format in {'torchscript', 'onnx', 'tensorrt'} |
|||
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch".') |
|||
return model_list |
|||
|
|||
@staticmethod |
|||
def get_transforms(model_name): |
|||
model_resolution = { |
|||
'vit_h14_in1k': 518, |
|||
'vit_l16_in1k': 512, |
|||
'vit_b16_in1k': 384, |
|||
'regnety_16gf_in1k': 384, |
|||
'regnety_32gf_in1k': 384, |
|||
'regnety_128gf_in1k': 384 |
|||
} |
|||
if model_name not in model_resolution.keys(): |
|||
log.warning('No transforms specified for model "%s", using resolution 384.', model_name) |
|||
resolution = 384 |
|||
else: |
|||
resolution = model_resolution[model_name] |
|||
transform = transforms.Compose([ |
|||
transforms.Resize( |
|||
resolution, |
|||
interpolation=transforms.InterpolationMode.BICUBIC, |
|||
), |
|||
transforms.CenterCrop(resolution), |
|||
transforms.ToTensor(), |
|||
transforms.Normalize( |
|||
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
|||
), |
|||
]) |
|||
return transform |
|||
|
|||
|
|||
class FeatureExtractor(nn.Module): |
|||
def __init__(self, model: nn.Module): |
|||
super().__init__() |
|||
self.model = model |
|||
self.features = None |
|||
|
|||
for name, child in self.model.named_children(): |
|||
if name == 'trunk_output': |
|||
self.handler = child.register_forward_hook(self.save_outputs_hook()) |
|||
|
|||
def save_outputs_hook(self): |
|||
def fn(_, __, output): |
|||
self.features = output |
|||
return fn |
|||
|
|||
def forward(self, x): |
|||
outs = self.model(x) |
|||
self.handler.remove() |
|||
return self.features, outs |
|||
|
|||
|
|||
if __name__ == '__main__': |
|||
from towhee import ops |
|||
|
|||
path = '/Users/mengjiagu/Desktop/models/data/image/animals10/bird.jpg' |
|||
|
|||
decoder = ops.image_decode.cv2() |
|||
img = decoder(path) |
|||
op = Swag('vit_b16_in1k') |
|||
# op = Swag('regnety_16gf_in1k') |
|||
out = op(img) |
|||
print(out.shape) |
Loading…
Reference in new issue