timm
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
46 lines
1.6 KiB
46 lines
1.6 KiB
3 years ago
|
import numpy
|
||
|
import torch
|
||
|
from typing import NamedTuple
|
||
|
|
||
|
from towhee.operator.base import NNOperator
|
||
|
from towhee.utils.pil_utils import to_pil
|
||
|
from towhee.types.image import Image as towheeImage
|
||
|
|
||
|
from torch import nn
|
||
|
|
||
|
from timm.data.transforms_factory import create_transform
|
||
|
from timm.data import resolve_data_config
|
||
|
from timm.models.factory import create_model
|
||
|
|
||
|
import warnings
|
||
|
warnings.filterwarnings('ignore')
|
||
|
|
||
|
class TimmImage(NNOperator):
|
||
|
"""
|
||
|
Pytorch image embedding operator that uses the Pytorch Image Model (timm) collection.
|
||
|
Args:
|
||
|
model_name (`str`):
|
||
|
Which model to use for the embeddings.
|
||
|
"""
|
||
|
def __init__(self, model_name: str, num_classes: int = 1000) -> None:
|
||
|
super().__init__()
|
||
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||
|
self.model = create_model(model_name, pretrained=True, num_classes=num_classes)
|
||
|
self.model.to(self.device)
|
||
|
self.model.eval()
|
||
|
config = resolve_data_config({}, model=self.model)
|
||
|
self.tfms = create_transform(**config)
|
||
|
|
||
|
def __call__(self, image: 'towheeImage') -> NamedTuple('Outputs', [('vec', numpy.ndarray)]):
|
||
|
img = self.tfms(to_pil(image)).unsqueeze(0)
|
||
|
img = img.to(self.device)
|
||
|
features = self.model.forward_features(img)
|
||
|
if features.dim() == 4:
|
||
|
global_pool = nn.AdaptiveAvgPool2d(1)
|
||
|
features = global_pool(features)
|
||
|
|
||
|
features = features.to('cpu')
|
||
|
feature_vector = features.flatten().detach().numpy()
|
||
|
Outputs = NamedTuple('Outputs', [('vec', numpy.ndarray)])
|
||
|
return Outputs(feature_vector)
|