logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

91 lines
2.5 KiB

# Image Embedding with Timm
*author: [Jael Gu](https://github.com/jaelgu), Filip*
<br />
## Description
An image embedding operator generates a vector given an image.
This operator extracts features for image with pre-trained models provided by [Timm](https://github.com/rwightman/pytorch-image-models).
Timm is a deep-learning library developed by [Ross Wightman](https://twitter.com/wightmanr),
who maintains SOTA deep-learning models and tools in computer vision.
<br />
## Code Example
Load an image from path './towhee.jpeg'
and use the pre-trained ResNet50 model ('resnet50') to generate an image embedding.
3 years ago
*Write the pipeline in simplified style:*
```python
import towhee
towhee.glob('./towhee.jpeg') \
3 years ago
.image_decode() \
.image_embedding.timm(model_name='resnet50') \
.show()
```
<img src="./result1.png" height="50px"/>
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('./towhee.jpeg') \
3 years ago
.image_decode['path', 'img']() \
.image_embedding.timm['img', 'vec'](model_name='resnet50') \
3 years ago
.select['img', 'vec']() \
.show()
```
<img src="./result2.png" height="150px"/>
<br />
## Factory Constructor
Create the operator via the following factory method:
***image_embedding.timm(model_name='resnet34', num_classes=1000, skip_preprocess=False)***
**Parameters:**
3 years ago
***model_name:*** *str*
The model name in string. The default value is "resnet34".
Refer to [Timm Docs](https://fastai.github.io/timmdocs/#List-Models-with-Pretrained-Weights) to get a full list of supported models.
3 years ago
***num_classes:*** *int*
The number of classes. The default value is 1000.
It is related to model and dataset.
3 years ago
***skip_preprocess:*** *bool*
The flag to control whether to skip image pre-process.
The default value is False.
If set to True, it will skip image preprocessing steps (transforms).
In this case, input image data must be prepared in advance in order to properly fit the model.
<br />
## Interface
An image embedding operator takes a towhee image as input.
It uses the pre-trained model specified by model name to generate an image embedding in ndarray.
**Parameters:**
***data:*** *Union[List[towhee._types.Image], towhee._types.Image]*
The decoded image data in numpy.ndarray. It allows both single input and a list for batch input.
3 years ago
**Returns:** *numpy.ndarray*
If only 1 image input, then output is an image embedding in shape of (feature_dim,).
If a list of images as input, then output is a numpy.ndarray in shape of (batch_num, feature_dim).