logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

278 lines
12 KiB

# Image Embedding with Timm
*author: [Jael Gu](https://github.com/jaelgu), Filip*
<br />
## Description
An image embedding operator generates a vector given an image.
This operator extracts features for image with pre-trained models provided by [Timm](https://github.com/rwightman/pytorch-image-models).
Timm is a deep-learning library developed by [Ross Wightman](https://twitter.com/wightmanr),
who maintains SOTA deep-learning models and tools in computer vision.
<br />
## Code Example
Load an image from path './towhee.jpeg'
and use the pre-trained ResNet50 model ('resnet50') to generate an image embedding.
*Write a pipeline with explicit inputs/outputs name specifications:*
```python
from towhee import pipe, ops, DataCollection
p = (
pipe.input('path')
.map('path', 'img', ops.image_decode())
.map('img', 'vec', ops.image_embedding.timm(model_name='resnet50'))
.output('img', 'vec')
)
DataCollection(p('towhee.jpeg')).show()
```
<img src="./result.png" height="150px"/>
<br />
## Factory Constructor
Create the operator via the following factory method:
***image_embedding.timm(model_name='resnet34', num_classes=1000, skip_preprocess=False)***
**Parameters:**
3 years ago
***model_name:*** *str*
The model name in string. The default value is "resnet34".
Refer to [Timm Docs](https://fastai.github.io/timmdocs/#List-Models-with-Pretrained-Weights) to get a full list of supported models.
3 years ago
***num_classes:*** *int*
The number of classes. The default value is 1000.
It is related to model and dataset.
3 years ago
***skip_preprocess:*** *bool*
The flag to control whether to skip image pre-process.
The default value is False.
If set to True, it will skip image preprocessing steps (transforms).
In this case, input image data must be prepared in advance in order to properly fit the model.
<br />
## Interface
An image embedding operator takes a towhee image as input.
It uses the pre-trained model specified by model name to generate an image embedding in ndarray.
**Parameters:**
***data:*** *towhee.types.Image*
The decoded image data in towhee Image (a subset of numpy.ndarray).
**Returns:** *numpy.ndarray*
An image embedding generated by model, in shape of (feature_dim,).
<br />
***save_model(format='pytorch', path='default')***
Save model to local with specified format.
**Parameters:**
***format***: *str*
​ The format of saved model, defaults to 'pytorch'.
***path***: *str*
​ The path where model is saved to. By default, it will save model to the operator directory.
```python
from towhee import ops
op = ops.image_embedding.timm(model_name='resnet50').get_op()
op.save_model('onnx', 'test.onnx')
```
<br />
***supported_model_names(format=None)***
Get a list of all supported model names or supported model names for specified model format.
**Parameters:**
***format***: *str*
​ The model format such as 'pytorch', 'torchscript'.
```python
from towhee import ops
op = ops.image_embedding.timm().get_op()
full_list = op.supported_model_names()
onnx_list = op.supported_model_names(format='onnx')
print(f'Onnx-support/Total Models: {len(onnx_list)}/{len(full_list)}')
```
2022-12-19 16:32:37,933 - 140704422594752 - timm_image.py-timm_image:88 - WARNING: The operator is initialized without specified model.
Onnx-support/Total Models: 715/759
<br />
## Fine-tune
To fine-tune this operator, please refer to [this example guide](https://github.com/towhee-io/examples/blob/main/fine_tune/5_train_cub_200_2011.ipynb).
## Towhee Serve
Models which is supported the towhee.serve.
**Model List**
models | models | models
--------- | ---------- | ------------
adv_inception_v3 | bat_resnext26ts | beit_base_patch16_224
beit_base_patch16_224_in22k | beit_base_patch16_384 | beit_large_patch16_224
beit_large_patch16_224_in22k | beit_large_patch16_384 | beit_large_patch16_512
botnet26t_256 | cait_m36_384 | cait_m48_448
cait_s24_224 | cait_s24_384 | cait_s36_384
cait_xs24_384 | cait_xxs24_224 | cait_xxs24_384
cait_xxs36_224 | cait_xxs36_384 | coat_lite_mini
coat_lite_small | coat_lite_tiny | convit_base
convit_small | convit_tiny | convmixer_768_32
convmixer_1024_20_ks9_p14 | convmixer_1536_20 | convnext_base
convnext_base_384_in22ft1k | convnext_base_in22ft1k | convnext_base_in22k
convnext_large | convnext_large_384_in22ft1k | convnext_large_in22ft1k
convnext_large_in22k | convnext_small | convnext_small_384_in22ft1k
convnext_small_in22ft1k | convnext_small_in22k | convnext_tiny
convnext_tiny_384_in22ft1k | convnext_tiny_hnf | convnext_tiny_in22ft1k
convnext_tiny_in22k | convnext_xlarge_384_in22ft1k | convnext_xlarge_in22ft1k
convnext_xlarge_in22k | cs3darknet_focus_l | cs3darknet_focus_m
cs3darknet_l | cs3darknet_m | cspdarknet53
cspresnet50 | cspresnext50 | darknet53
deit3_base_patch16_224 | deit3_base_patch16_224_in21ft1k | deit3_base_patch16_384
deit3_base_patch16_384_in21ft1k | deit3_huge_patch14_224 | deit3_huge_patch14_224_in21ft1k
deit3_large_patch16_224 | deit3_large_patch16_224_in21ft1k | deit3_large_patch16_384
deit3_large_patch16_384_in21ft1k | deit3_small_patch16_224 | deit3_small_patch16_224_in21ft1k
deit3_small_patch16_384 | deit3_small_patch16_384_in21ft1k | deit_base_distilled_patch16_224
deit_base_distilled_patch16_384 | deit_base_patch16_224 | deit_base_patch16_384
deit_small_distilled_patch16_224 | deit_small_patch16_224 | deit_tiny_distilled_patch16_224
deit_tiny_patch16_224 | densenet121 | densenet161
densenet169 | densenet201 | densenetblur121d
dla34 | dla46_c | dla46x_c
dla60 | dla60_res2net | dla60_res2next
dla60x | dla60x_c | dla102
dla102x | dla102x2 | dla169
dm_nfnet_f0 | dm_nfnet_f1 | dm_nfnet_f2
dm_nfnet_f3 | dm_nfnet_f4 | dm_nfnet_f5
dm_nfnet_f6 | dpn68 | dpn68b
dpn92 | dpn98 | dpn107
dpn131 | eca_botnext26ts_256 | eca_halonext26ts
eca_nfnet_l0 | eca_nfnet_l1 | eca_nfnet_l2
eca_resnet33ts | eca_resnext26ts | ecaresnet26t
ecaresnet50t | ecaresnet269d | edgenext_small
edgenext_small_rw | edgenext_x_small | edgenext_xx_small
efficientnet_b0 | efficientnet_b1 | efficientnet_b2
efficientnet_b3 | efficientnet_b4 | efficientnet_el
efficientnet_el_pruned | efficientnet_em | efficientnet_es
efficientnet_es_pruned | efficientnet_lite0 | efficientnetv2_rw_m
efficientnetv2_rw_s | efficientnetv2_rw_t | ens_adv_inception_resnet_v2
ese_vovnet19b_dw | ese_vovnet39b | fbnetc_100
fbnetv3_b | fbnetv3_d | fbnetv3_g
gc_efficientnetv2_rw_t | gcresnet33ts | gcresnet50t
gcresnext26ts | gcresnext50ts | gernet_l
gernet_m | gernet_s | ghostnet_100
gluon_inception_v3 | gluon_resnet18_v1b | gluon_resnet34_v1b
gluon_resnet50_v1b | gluon_resnet50_v1c | gluon_resnet50_v1d
gluon_resnet50_v1s | gluon_resnet101_v1b | gluon_resnet101_v1c
gluon_resnet101_v1d | gluon_resnet101_v1s | gluon_resnet152_v1b
gluon_resnet152_v1c | gluon_resnet152_v1d | gluon_resnet152_v1s
gluon_resnext50_32x4d | gluon_resnext101_32x4d | gluon_resnext101_64x4d
gluon_senet154 | gluon_seresnext50_32x4d | gluon_seresnext101_32x4d
gluon_seresnext101_64x4d | gluon_xception65 | gmlp_s16_224
halo2botnet50ts_25
halo2botnet50ts_256 | halonet26t | halonet50ts
haloregnetz_b | hardcorenas_a | hardcorenas_b
hardcorenas_c | hardcorenas_d | hardcorenas_e
hrnet_w18 | hrnet_w18_small | hrnet_w18_small_v2
hrnet_w30 | hrnet_w32 | hrnet_w40
hrnet_w44 | hrnet_w48 | hrnet_w64
ig_resnext101_32x8d | ig_resnext101_32x16d | ig_resnext101_32x32d
ig_resnext101_32x48d | inception_resnet_v2 | inception_v3
inception_v4 | jx_nest_base | jx_nest_small
jx_nest_tiny | lambda_resnet26rpt_256 | lambda_resnet26t
lambda_resnet50ts | lamhalobotnet50ts_256 | lcnet_050
lcnet_075 | lcnet_100 | legacy_seresnet18
legacy_seresnet34 | legacy_seresnet50 | legacy_seresnet101
legacy_seresnet152 | legacy_seresnext26_32x4d | levit_128
levit_128s | levit_192 | levit_256
levit_384 | mixer_b16_224 | mixer_b16_224_in21k
mixer_b16_224_miil | mixer_b16_224_miil_in21k | mixer_l16_224
mixer_l16_224_in21k | mixnet_l | mixnet_m
mixnet_s | mixnet_xl | mnasnet_100
mnasnet_small | mobilenetv2_050 | mobilenetv2_100
mobilenetv2_110d | mobilenetv2_120d | mobilenetv2_140
mobilenetv3_large_100 | mobilenetv3_large_100_miil | mobilenetv3_large_100_miil_in21k
mobilenetv3_rw | mobilenetv3_small_050 | mobilenetv3_small_075
mobilenetv3_small_100 | mobilevit_s | mobilevit_xs
mobilevit_xxs | mobilevitv2_050 | mobilevitv2_075
mobilevitv2_100 | mobilevitv2_125 | mobilevitv2_150
mobilevitv2_150_384_in22ft1k | mobilevitv2_150_in22ft1k | mobilevitv2_175
mobilevitv2_175_384_in22ft1k | mobilevitv2_175_in22ft1k | mobilevitv2_200
mobilevitv2_200_384_in22ft1k | mobilevitv2_200_in22ft1k | nf_regnet_b1
nf_resnet50 | nfnet_l0 | pit_b_224
pit_b_distilled_224 | pit_s_224 | pit_s_distilled_224
pit_ti_224 | pit_ti_distilled_224 | pit_xs_224
pit_xs_distilled_224 | pnasnet5large | poolformer_m36
poolformer_m48 | poolformer_s12 | poolformer_s24
poolformer_s36 | regnetv_040 | regnetv_064
regnetx_002 | regnetx_004 | regnetx_006
regnetx_008 | regnetx_016 | regnetx_032
regnetx_040 | regnetx_064 | regnetx_080
regnetx_120 | regnetx_160 | regnetx_320
regnety_002 | regnety_004 | regnety_006
regnety_008 | regnety_016 | regnety_032
regnety_040 | regnety_064 | regnety_080
regnety_120 | regnety_160 | regnety_320
regnetz_040 | regnetz_040h | regnetz_b16
regnetz_c16 | regnetz_c16_evos | regnetz_d8
regnetz_d8_evos | regnetz_d32 | regnetz_e8
repvgg_a2 | repvgg_b0 | repvgg_b1
repvgg_b1g4 | repvgg_b2 | repvgg_b2g4
repvgg_b3 | repvgg_b3g4 | res2net50_14w_8s
res2net50_26w_4s | res2net50_26w_6s | res2net50_26w_8s
res2net50_48w_2s | res2net101_26w_4s | res2next50
resmlp_12_224 | resmlp_12_224_dino | resmlp_12_distilled_224
resmlp_24_224 | resmlp_24_224_dino | resmlp_24_distilled_224
resmlp_36_224 | resmlp_36_distilled_224 | resmlp_big_24_224
resmlp_big_24_224_in22ft1k | resnest14d | resnest26d
resnest50d | resnest50d_1s4x24d | resnest50d_4s2x40d
resnest101e | resnest200e | resnet10t
resnet14t | resnet18 | resnet18d
resnet26 | resnet26d | resnet26t
resnet32ts | resnet33ts | resnet34
resnet34d | resnet50 | resnet50_gn
resnet50d | resnet51q | resnet61q
resnet101 | resnet101d | resnet152
resnet152d | resnet200d | resnetaa50
resnetblur50 | resnetrs50
# More Resources
- [How to Get the Right Vector Embeddings - Zilliz blog](https://zilliz.com/blog/how-to-get-the-right-vector-embeddings): A comprehensive introduction to vector embeddings and how to generate them with popular open-source models.
- [What Are Vector Embeddings?](https://zilliz.com/glossary/vector-embeddings): Learn the definition of vector embeddings, how to create vector embeddings, and more.
- [Embedding Inference at Scale for RAG Applications with Ray Data and Milvus - Zilliz blog](https://zilliz.com/blog/embedding-inference-at-scale-for-RAG-app-with-ray-data-and-milvus): This blog showed how to use Ray Data and Milvus Bulk Import features to significantly speed up the vector generation and efficiently batch load them into a vector database.
- [Image Embeddings for Enhanced Image Search - Zilliz blog](https://zilliz.com/learn/image-embeddings-for-enhanced-image-search): Image Embeddings are the core of modern computer vision algorithms. Understand their implementation and use cases and explore different image embedding models.
- [Enhancing Information Retrieval with Sparse Embeddings | Zilliz Learn - Zilliz blog](https://zilliz.com/learn/enhancing-information-retrieval-learned-sparse-embeddings): Explore the inner workings, advantages, and practical applications of learned sparse embeddings with the Milvus vector database
- [An Introduction to Vector Embeddings: What They Are and How to Use Them - Zilliz blog](https://zilliz.com/learn/everything-you-should-know-about-vector-embeddings): In this blog post, we will understand the concept of vector embeddings and explore its applications, best practices, and tools for working with embeddings.