logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

97 lines
2.9 KiB

from towhee import ops
from timm_image import TimmImage
import torch
import numpy
import onnx
import onnxruntime
import os
from pathlib import Path
import logging
import platform
import psutil
# models = TimmImage.supported_model_names()[:1]
models = ['resnet50']
atol = 1e-3
log_path = 'timm_onnx.log'
f = open('onnx.csv', 'w+')
f.write('model,load_op,save_onnx,check_onnx,run_onnx,accuracy\n')
logger = logging.getLogger('timm_onnx')
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh = logging.FileHandler(log_path)
fh.setLevel(logging.DEBUG)
fh.setFormatter(formatter)
logger.addHandler(fh)
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
ch.setFormatter(formatter)
logger.addHandler(ch)
logger.debug(f'machine: {platform.platform()}-{platform.processor()}')
logger.debug(f'free/available/total mem: {round(psutil.virtual_memory().free / (1024.0 ** 3))}'
f'/{round(psutil.virtual_memory().available / (1024.0 ** 3))}'
f'/{round(psutil.virtual_memory().total / (1024.0 ** 3))} GB')
logger.debug(f'cpu: {psutil.cpu_count()}')
status = None
for name in models:
logger.info(f'***{name}***')
saved_name = name.replace('/', '-')
onnx_path = f'saved/onnx/{saved_name}.onnx'
if status:
f.write(','.join(status) + '\n')
status = [name] + ['fail'] * 5
op = TimmImage(model_name=name, device='cpu')
data = torch.rand((1,) + op.config['input_size'])
try:
out1 = op.model(data).detach().numpy()
logger.info('OP LOADED.')
status[1] = 'success'
except Exception as e:
logger.error(f'FAIL TO LOAD OP: {e}')
continue
try:
op.save_model(format='onnx')
logger.info('ONNX SAVED.')
status[2] = 'success'
except Exception as e:
logger.error(f'FAIL TO SAVE ONNX: {e}')
continue
try:
try:
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
except Exception:
saved_onnx = onnx.load(onnx_path, load_external_data=False)
onnx.checker.check_model(saved_onnx)
logger.info('ONNX CHECKED.')
status[3] = 'success'
except Exception as e:
logger.error(f'FAIL TO CHECK ONNX: {e}')
continue
try:
sess = onnxruntime.InferenceSession(onnx_path,
providers=onnxruntime.get_available_providers())
out2 = sess.run(None, input_feed={'input_0': data.detach().numpy()})
logger.info('ONNX WORKED.')
status[4] = 'success'
if numpy.allclose(out1, out2, atol=atol):
logger.info('Check accuracy: OK')
status[5] = 'success'
else:
logger.info(f'Check accuracy: atol is larger than {atol}.')
except Exception as e:
logger.error(f'FAIL TO RUN ONNX: {e}')
continue
if status:
f.write(','.join(status) + '\n')
print('Finished.')