|  | @ -13,35 +13,34 @@ which maintains SOTA deep-learning models and tools in computer vision. | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | ## Code Example |  |  | ## Code Example | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | Load an image from path './dog.jpg' |  |  |  | 
		
	
		
			
				|  |  |  |  |  | Load an image from path './towhee.jpg' | 
		
	
		
			
				|  |  | and use the pretrained ResNet50 model ('resnet50') to generate an image embedding.  |  |  | and use the pretrained ResNet50 model ('resnet50') to generate an image embedding.  | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  |  *Write the pipeline in simplified style*: |  |  |  *Write the pipeline in simplified style*: | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | ```python |  |  | ```python | 
		
	
		
			
				|  |  | from towhee import dc |  |  |  | 
		
	
		
			
				|  |  |  |  |  | import towhee | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | dc.glob('./dog.jpg') \ |  |  |  | 
		
	
		
			
				|  |  |   .image_decode.cv2() \ |  |  |  | 
		
	
		
			
				|  |  |   .image_embedding.timm(model_name='resnet50') \ |  |  |  | 
		
	
		
			
				|  |  |   .show() |  |  |  | 
		
	
		
			
				|  |  |  |  |  | towhee.glob('./towhee.jpg') \ | 
		
	
		
			
				|  |  |  |  |  |       .image_decode.cv2() \ | 
		
	
		
			
				|  |  |  |  |  |       .image_embedding.timm(model_name='resnet50') \ | 
		
	
		
			
				|  |  |  |  |  |       .show() | 
		
	
		
			
				|  |  | ``` |  |  | ``` | 
		
	
		
			
				|  |  |     | [0.052790146, 0.0, 0.0, ...] shape=(2048,) | |  |  |  | 
		
	
		
			
				|  |  |  |  |  | <img src="https://towhee.io/image-embedding/timm/src/branch/main/result1.png" alt="result1" style="width:50px;"/> | 
		
	
		
			
				|  |  |  |  |  | 
 | 
		
	
		
			
				|  |  |  |  |  |  | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | *Write a same pipeline with explicit inputs/outputs name specifications:* |  |  | *Write a same pipeline with explicit inputs/outputs name specifications:* | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | ```python |  |  | ```python | 
		
	
		
			
				|  |  | from towhee import dc |  |  |  | 
		
	
		
			
				|  |  |  |  |  | import towhee | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | dc.glob['path']('./dog.jpg') \ |  |  |  | 
		
	
		
			
				|  |  |   .image_decode.cv2['path', 'img']() \ |  |  |  | 
		
	
		
			
				|  |  |   .image_embedding.timm['img', 'vec'](model_name='resnet50') \ |  |  |  | 
		
	
		
			
				|  |  |   .select('vec') \ |  |  |  | 
		
	
		
			
				|  |  |   .to_list() |  |  |  | 
		
	
		
			
				|  |  |  |  |  | towhee.glob['path']('./dog.jpg') \ | 
		
	
		
			
				|  |  |  |  |  |       .image_decode.cv2['path', 'img']() \ | 
		
	
		
			
				|  |  |  |  |  |       .image_embedding.timm['img', 'vec'](model_name='resnet50') \ | 
		
	
		
			
				|  |  |  |  |  |       .select('img', 'vec') \ | 
		
	
		
			
				|  |  |  |  |  |       .show('img', 'vec') | 
		
	
		
			
				|  |  | ``` |  |  | ``` | 
		
	
		
			
				|  |  |     [array([0.05279015, 0.        , 0.        , ..., 0.00239191, 0.06632169, |  |  |  | 
		
	
		
			
				|  |  |         0.        ], dtype=float32)] |  |  |  | 
		
	
		
			
				|  |  | 
 |  |  |  | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
		
			
				|  |  | ## Factory Constructor |  |  | ## Factory Constructor | 
		
	
		
			
				|  |  | 
 |  |  | 
 | 
		
	
	
		
			
				|  | 
 |