logo
Browse Source

Refactor

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
test
Jael Gu 3 years ago
parent
commit
6a341403a7
  1. 78
      README.md
  2. 19
      __init__.py
  3. 62
      timm_image.py

78
README.md

@ -1,2 +1,78 @@
# timm-image
# Image Embedding with Timm
*author: Jael Gu, Filip*
## Desription
An image embedding operator implemented with pretrained models provided by [Timm](https://github.com/rwightman/pytorch-image-models).
```python
from towhee import ops
import numpy as np
img_encoder = ops.image_embedding.timm('resnet50')
fake_img = np.zeros((256, 256, 3))
image_embedding = img_encoder(fake_img)
```
## Factory Constructor
Create the operator via the following factory method
***ops.image_embedding.timm(model_name)***
## Interface
An image decode operator takes an image path as input. It decodes the image back to ndarray.
**Parameters:**
***img***: *numpy.ndarray*
​ The decoded image data in numpy.ndarray.
**Returns**: *numpy.ndarray*
​ The image embedding extracted by model.
## Code Example
Load an image from path './dog.jpg'
and use the pretrained ResNet50 model ('resnet50') to generate an image embedding.
*Write the pipeline in simplified style*:
```python
import towhee.DataCollection as dc
dc.glob(./dog.jpg)
.image_decode()
.image_embedding.timm('resnet50')
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
from towhee import DataCollection as dc
dc.glob['path'](./dog.jpg)
.image_decode['path', 'img']()
.image_embedding.timm['img', 'vec']('resnet50')
.select('img')
.show()
```

19
__init__.py

@ -0,0 +1,19 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .timm_image import TimmImage
def timm():
return TimmImage()

62
timm_image.py

@ -1,27 +1,50 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy
import torch
from typing import NamedTuple
from towhee.operator.base import NNOperator
from towhee.utils.pil_utils import to_pil
from towhee.types.image import Image as towheeImage
from towhee.operator.base import NNOperator, OperatorFlag
from towhee import register
import torch
from torch import nn
from PIL import Image as PILImage
from timm.data.transforms_factory import create_transform
from timm.data import resolve_data_config
from timm.models.factory import create_model
import warnings
warnings.filterwarnings('ignore')
log = logging.getLogger()
@register(output_schema=['vec'])
class TimmImage(NNOperator):
"""
Pytorch image embedding operator that uses the Pytorch Image Model (timm) collection.
Args:
model_name (`str`):
Which model to use for the embeddings.
num_classes (`int = 1000`):
Number of classes for classification.
"""
def __init__(self, model_name: str, num_classes: int = 1000) -> None:
super().__init__()
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
@ -31,8 +54,16 @@ class TimmImage(NNOperator):
config = resolve_data_config({}, model=self.model)
self.tfms = create_transform(**config)
def __call__(self, image: 'towheeImage') -> NamedTuple('Outputs', [('vec', numpy.ndarray)]):
img = self.tfms(to_pil(image)).unsqueeze(0)
def __call__(self, img: numpy.ndarray) -> numpy.ndarray:
if hasattr(img, 'mode'):
if img.mode != 'RGB':
log.error(f'Invalid image mode: expect "RGB" but receive "{img.mode}".')
raise AssertionError(f'Invalid image mode "{img.mode}".')
else:
log.warning(f'Image mode is not specified. Using "RGB" now.')
img = PILImage.fromarray(img.astype('uint8'), 'RGB')
img = self.tfms(img).unsqueeze(0)
img = img.to(self.device)
features = self.model.forward_features(img)
if features.dim() == 4:
@ -41,5 +72,18 @@ class TimmImage(NNOperator):
features = features.to('cpu')
feature_vector = features.flatten().detach().numpy()
Outputs = NamedTuple('Outputs', [('vec', numpy.ndarray)])
return Outputs(feature_vector)
return feature_vector
# if __name__ == '__main__':
# import cv2
# from towhee._types import Image
#
#
# path = '/path/to/image'
# img = cv2.imread(path)
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# img = Image(img, 'RGB')
#
# op = TimmImage('resnet50')
# out = op(img)

Loading…
Cancel
Save