logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

132 lines
4.8 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy
import os
from pathlib import Path
import towhee
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee import register
import torch
from torch import nn
from PIL import Image as PILImage
import timm
from timm.data.transforms_factory import create_transform
from timm.data import resolve_data_config
from timm.models.factory import create_model
import warnings
warnings.filterwarnings('ignore')
log = logging.getLogger()
@register(output_schema=['vec'])
class TimmImage(NNOperator):
"""
Pytorch image embedding operator that uses the Pytorch Image Model (timm) collection.
Args:
model_name (`str`):
Which model to use for the embeddings.
num_classes (`int = 1000`):
Number of classes for classification.
skip_preprocess (`bool = False`):
Whether skip image transforms.
"""
def __init__(self, model_name: str, num_classes: int = 1000, skip_preprocess: bool = False) -> None:
super().__init__()
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model_name = model_name
self.model = create_model(self.model_name, pretrained=True, num_classes=num_classes)
self.model.to(self.device)
self.model.eval()
self.config = resolve_data_config({}, model=self.model)
self.tfms = create_transform(**self.config)
self.skip_tfms = skip_preprocess
@arg(1, to_image_color('RGB'))
def __call__(self, img: towhee._types.Image) -> numpy.ndarray:
img = PILImage.fromarray(img.astype('uint8'), 'RGB')
if not self.skip_tfms:
img = self.tfms(img).unsqueeze(0)
img = img.to(self.device)
features = self.model.forward_features(img)
if features.dim() == 4:
global_pool = nn.AdaptiveAvgPool2d(1)
features = global_pool(features)
features = features.to('cpu')
vec = features.flatten().detach().numpy()
return vec
def save_model(self, format: str = 'pytorch', path: str = 'default'):
if path == 'default':
path = str(Path(__file__).parent)
path = os.path.join(path, 'saved', format)
os.makedirs(path, exist_ok=True)
name = self.model_name.replace('/', '-')
path = os.path.join(path, name)
dummy_input = torch.rand((1,) + self.config['input_size'])
if format == 'pytorch':
path = path + '.pt'
torch.save(self.model, path)
elif format == 'torchscript':
path = path + '.pt'
try:
try:
jit_model = torch.jit.script(self.model)
except Exception:
jit_model = torch.jit.trace(self.model, dummy_input, strict=False)
torch.jit.save(jit_model, path)
except Exception as e:
log.error(f'Fail to save as torchscript: {e}.')
raise RuntimeError(f'Fail to save as torchscript: {e}.')
elif format == 'onnx':
path = path + '.onnx'
try:
torch.onnx.export(self.model,
dummy_input,
path,
input_names=["input"],
output_names=["output"],
opset_version=12)
except Exception as e:
log.error(f'Fail to save as onnx: {e}.')
raise RuntimeError(f'Fail to save as onnx: {e}.')
# todo: elif format == 'tensorrt':
else:
log.error(f'Unsupported format "{format}".')
@staticmethod
def supported_model_names(format: str = None):
full_list = timm.list_models(pretrained=True)
full_list.sort()
if format is None:
model_list = full_list
elif format == 'pytorch':
to_remove = []
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
# todo: elif format == 'torchscript':
# todo: elif format == 'tensorrt'
else:
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch".')
return model_list