logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

144 lines
5.3 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import numpy
import os
from pathlib import Path
from typing import List, Union
import towhee
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee import register
import torch
from torch import nn
from PIL import Image as PILImage
import timm
from timm.data.transforms_factory import create_transform
from timm.data import resolve_data_config
from timm.models.factory import create_model
import warnings
warnings.filterwarnings('ignore')
log = logging.getLogger()
@register(output_schema=['vec'])
class TimmImage(NNOperator):
"""
Pytorch image embedding operator that uses the Pytorch Image Model (timm) collection.
Args:
model_name (`str`):
Which model to use for the embeddings.
num_classes (`int = 1000`):
Number of classes for classification.
skip_preprocess (`bool = False`):
Whether skip image transforms.
"""
def __init__(self, model_name: str, num_classes: int = 1000, skip_preprocess: bool = False) -> None:
super().__init__()
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model_name = model_name
self.model = create_model(self.model_name, pretrained=True, num_classes=num_classes)
self.model.to(self.device)
self.model.eval()
self.config = resolve_data_config({}, model=self.model)
self.tfms = create_transform(**self.config)
self.skip_tfms = skip_preprocess
def __call__(self, data: Union[List[towhee._types.Image], towhee._types.Image]):
if isinstance(data, list):
imgs = []
for img in data:
img = self.convert_img(img)
img = img if self.skip_tfms else self.tfms(img)
imgs.append(img)
inputs = torch.stack(imgs)
else:
img = self.convert_img(data)
img = img if self.skip_tfms else self.tfms(img)
inputs = img.unsqueeze(0)
inputs = inputs.to(self.device)
features = self.model.forward_features(inputs)
if features.dim() == 4:
global_pool = nn.AdaptiveAvgPool2d(1)
features = global_pool(features)
vecs = features.to('cpu').flatten(1).squeeze(0).detach().numpy()
return vecs
@arg(1, to_image_color('RGB'))
def convert_img(self, img: towhee._types.Image):
img = PILImage.fromarray(img.astype('uint8'), 'RGB')
return img
def save_model(self, format: str = 'pytorch', path: str = 'default'):
if path == 'default':
path = str(Path(__file__).parent)
path = os.path.join(path, 'saved', format)
os.makedirs(path, exist_ok=True)
name = self.model_name.replace('/', '-')
path = os.path.join(path, name)
dummy_input = torch.rand((1,) + self.config['input_size'])
if format == 'pytorch':
path = path + '.pt'
torch.save(self.model, path)
elif format == 'torchscript':
path = path + '.pt'
try:
try:
jit_model = torch.jit.script(self.model)
except Exception:
jit_model = torch.jit.trace(self.model, dummy_input, strict=False)
torch.jit.save(jit_model, path)
except Exception as e:
log.error(f'Fail to save as torchscript: {e}.')
raise RuntimeError(f'Fail to save as torchscript: {e}.')
elif format == 'onnx':
path = path + '.onnx'
try:
torch.onnx.export(self.model,
dummy_input,
path,
input_names=["input"],
output_names=["output"],
opset_version=12)
except Exception as e:
log.error(f'Fail to save as onnx: {e}.')
raise RuntimeError(f'Fail to save as onnx: {e}.')
# todo: elif format == 'tensorrt':
else:
log.error(f'Unsupported format "{format}".')
@staticmethod
def supported_model_names(format: str = None):
full_list = timm.list_models(pretrained=True)
full_list.sort()
if format is None:
model_list = full_list
elif format == 'pytorch':
to_remove = []
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
# todo: elif format == 'torchscript':
# todo: elif format == 'tensorrt'
else:
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch".')
return model_list