blip
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
114 lines
4.2 KiB
114 lines
4.2 KiB
# Copyright 2021 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from torchvision import transforms
|
|
from torchvision.transforms.functional import InterpolationMode
|
|
|
|
from transformers import AutoProcessor, BlipForImageTextRetrieval
|
|
from towhee import register
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
from towhee.types.arg import arg, to_image_color
|
|
from towhee.types.image_utils import from_pil, to_pil
|
|
|
|
#@accelerate
|
|
class BLIPModelVision(nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.model = model
|
|
|
|
def forward(self, image):
|
|
image_embeds = self.model.visual_encoder(image)
|
|
image_embeds = self.model.vision_proj(image_embeds[:,0,:])
|
|
return image_embeds
|
|
|
|
#@accelerate
|
|
class BLIPModelText(nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.model = model
|
|
|
|
def forward(self, input_ids, attention_mask):
|
|
text_features = self.model.text_encoder(input_ids, attention_mask = attention_mask,
|
|
return_dict = False, mode = 'text')[0]
|
|
text_features = self.model.text_proj(text_features[:,0,:])j
|
|
return text_features
|
|
|
|
@register(output_schema=['vec'])
|
|
class Blip(NNOperator):
|
|
"""
|
|
BLIP multi-modal embedding operator
|
|
"""
|
|
def __init__(self, model_name: str, modality: str, device:str = 'cpu', checkpoint_path: str = None):
|
|
super().__init__()
|
|
self.model_name = model_name
|
|
self.device = device
|
|
cfg = self._configs()[model_name]
|
|
|
|
model_url = cfg['weights']
|
|
image_size = cfg['image_size']
|
|
|
|
model = BlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
|
|
self.processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")
|
|
|
|
if self.modality == 'image':
|
|
self.model = BLIPModelVision(model)
|
|
elif self.modality == 'text':
|
|
self.model = BLIPModelText(model)
|
|
else:
|
|
raise ValueError("modality[{}] not implemented.".format(self.modality))
|
|
|
|
self._modality = modality
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.model.to(self.device)
|
|
self.model.eval()
|
|
|
|
#self.tfms = transforms.Compose([
|
|
# transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC),
|
|
# transforms.ToTensor(),
|
|
# transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
|
# ])
|
|
|
|
def __call__(self, data):
|
|
if self._modality == 'image':
|
|
vec = self._inference_from_image(data)
|
|
elif self._modality == 'text':
|
|
vec = self._inference_from_text(data)
|
|
else:
|
|
raise ValueError("modality[{}] not implemented.".format(self._modality))
|
|
return vec.detach().cpu().numpy().flatten()
|
|
|
|
def _inference_from_text(self, text):
|
|
inputs = self.processor(text=text, padding=True, return_tensors="pt")
|
|
inputs = inputs.to(self.device)
|
|
text_feature = self.model(input_ids = inputs. , attention_mask)[0]
|
|
return text_feature
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
def _inference_from_image(self, img):
|
|
inputs = self.processor(images=img, return_tensors="pt")
|
|
inputs = inputs.to(self.device)
|
|
image_feature = self.model(inputs)
|
|
return image_feature
|
|
|
|
def _configs(self):
|
|
config = {}
|
|
config['blip_base'] = {}
|
|
config['blip_base']['weights'] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth'
|
|
config['blip_base']['image_size'] = 224
|
|
return config
|
|
|