blip
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
339 lines
12 KiB
339 lines
12 KiB
# Copyright 2021 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import os
|
|
from pathlib import Path
|
|
from typing import Optional, Union, Tuple
|
|
from types import MethodType
|
|
|
|
import torch
|
|
import logging
|
|
import warnings
|
|
from torch import nn
|
|
|
|
from transformers import AutoProcessor, BlipForImageTextRetrieval
|
|
from transformers import logging as t_logging
|
|
from transformers.models.blip.modeling_blip import BlipOutput, blip_loss
|
|
|
|
from towhee import register
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
from towhee.types.arg import arg, to_image_color
|
|
#from towhee.dc2 import accelerate
|
|
|
|
log = logging.getLogger('run_op')
|
|
warnings.filterwarnings('ignore')
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
t_logging.set_verbosity_error()
|
|
|
|
def _forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
pixel_values: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
return_loss: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BlipOutput]:
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
vision_outputs = self.vision_model(
|
|
pixel_values=pixel_values,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
text_outputs = self.text_encoder(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
image_embeds = vision_outputs[1]
|
|
image_embeds = self.vision_proj(image_embeds)
|
|
|
|
text_embeds = text_outputs[0]
|
|
text_embeds = self.text_proj(text_embeds[:,0,:])
|
|
|
|
# normalized features
|
|
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
|
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
|
|
|
# cosine similarity as logits
|
|
logit_scale = self.logit_scale.exp()
|
|
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
|
logits_per_image = logits_per_text.t()
|
|
|
|
loss = None
|
|
if return_loss:
|
|
loss = blip_loss(logits_per_text)
|
|
|
|
if not return_dict:
|
|
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return BlipOutput(
|
|
loss=loss,
|
|
logits_per_image=logits_per_image,
|
|
logits_per_text=logits_per_text,
|
|
text_embeds=text_embeds,
|
|
image_embeds=image_embeds,
|
|
text_model_output=text_outputs,
|
|
vision_model_output=vision_outputs,
|
|
)
|
|
|
|
|
|
def create_model(cfg, modality, checkpoint_path, device):
|
|
hf_blip_model = BlipForImageTextRetrieval.from_pretrained(cfg)
|
|
if checkpoint_path:
|
|
try:
|
|
state_dict = torch.load(checkpoint_path, map_location=device)
|
|
hf_blip_model.load_state_dict(state_dict)
|
|
except Exception as e:
|
|
log.error(f"Fail to load state dict from {checkpoint_path}: {e}")
|
|
hf_blip_model.to(device)
|
|
hf_blip_model.eval()
|
|
|
|
if modality == 'image':
|
|
blip = BLIPModelVision(hf_blip_model)
|
|
elif modality == 'text':
|
|
blip = BLIPModelText(hf_blip_model)
|
|
else:
|
|
raise ValueError("modality[{}] not implemented.".format(modality))
|
|
return blip
|
|
|
|
#@accelerate
|
|
class BLIPModelVision(nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.backbone = model
|
|
|
|
def forward(self, pixel_values):
|
|
image_embeds = self.backbone.vision_model(pixel_values)[0]
|
|
image_embeds = self.backbone.vision_proj(image_embeds[:,0,:])
|
|
return image_embeds
|
|
|
|
#@accelerate
|
|
class BLIPModelText(nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.backbone = model
|
|
|
|
def forward(self, input_ids, attention_mask):
|
|
text_features = self.backbone.text_encoder(input_ids, attention_mask = attention_mask,
|
|
return_dict = False)[0]
|
|
text_features = self.backbone.text_proj(text_features[:,0,:])
|
|
return text_features
|
|
|
|
class Model:
|
|
def __init__(self, model_name, modality, checkpoint_path, device):
|
|
self.model = create_model(model_name, modality, checkpoint_path, device)
|
|
self.device = device
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
new_args = []
|
|
for item in args:
|
|
new_args.append(item.to(self.device))
|
|
new_kwargs = {}
|
|
for k, value in kwargs.items():
|
|
new_kwargs[k] = value.to(self.device)
|
|
outs = self.model(*new_args, **new_kwargs)
|
|
return outs
|
|
|
|
@register(output_schema=['vec'])
|
|
class Blip(NNOperator):
|
|
"""
|
|
BLIP multi-modal embedding operator
|
|
"""
|
|
def __init__(self, model_name: str, modality: str, device:str = 'cpu', checkpoint_path: str = None):
|
|
super().__init__()
|
|
self.model_name = model_name
|
|
real_name = self._configs()[model_name]['name']
|
|
self.model = Model(real_name, modality, checkpoint_path, device)
|
|
self.modality = modality
|
|
self.device = device
|
|
self.checkpoint_path = checkpoint_path
|
|
self.processor = AutoProcessor.from_pretrained(real_name)
|
|
|
|
def __call__(self, data):
|
|
if not isinstance(data, list):
|
|
data = [data]
|
|
else:
|
|
data = data
|
|
results = []
|
|
for single_data in data:
|
|
result = self.inference_single_data(single_data)
|
|
results.append(result)
|
|
if len(data) == 1:
|
|
return results[0]
|
|
else:
|
|
return results
|
|
|
|
def _inference_from_text(self, text):
|
|
inputs = self.processor(text=text, padding=True, return_tensors='pt')
|
|
inputs = inputs.to(self.device)
|
|
text_feature = self.model(input_ids = inputs.input_ids, attention_mask = inputs.attention_mask)[0]
|
|
return text_feature
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
def _inference_from_image(self, img):
|
|
inputs = self.processor(images=img, return_tensors='pt')
|
|
inputs = inputs.to(self.device)
|
|
image_feature = self.model(inputs['pixel_values'])
|
|
return image_feature
|
|
|
|
def inference_single_data(self, data):
|
|
if self.modality == 'image':
|
|
vec = self._inference_from_image(data)
|
|
elif self.modality == 'text':
|
|
vec = self._inference_from_text(data)
|
|
else:
|
|
raise ValueError("modality[{}] not implemented.".format(self.modality))
|
|
return vec.detach().cpu().numpy().flatten()
|
|
|
|
def _configs(self):
|
|
config = {}
|
|
config['blip_itm_base_coco'] = {}
|
|
config['blip_itm_base_coco']['name'] = 'Salesforce/blip-itm-base-coco'
|
|
config['blip_itm_base_flickr'] = {}
|
|
config['blip_itm_base_flickr']['name'] = 'Salesforce/blip-itm-base-flickr'
|
|
config['blip_itm_large_coco'] = {}
|
|
config['blip_itm_large_coco']['name'] = 'Salesforce/blip-itm-large-coco'
|
|
config['blip_itm_large_flickr'] = {}
|
|
config['blip_itm_large_flickr']['name'] = 'Salesforce/blip-itm-large-flickr'
|
|
return config
|
|
|
|
@property
|
|
def _model(self):
|
|
return self.model.model
|
|
|
|
def train(self, **kwargs):
|
|
import sys
|
|
import pathlib
|
|
path = str(pathlib.Path(__file__).parent)
|
|
sys.path.append(path)
|
|
from train_blip_with_hf_trainer import train_with_hf_trainer
|
|
data_args = kwargs.pop('data_args', None)
|
|
training_args = kwargs.pop('training_args', None)
|
|
model_args = kwargs.pop('model_args', None)
|
|
model_finetune = self._model.backbone
|
|
model_finetune.forward = MethodType(_forward, model_finetune)
|
|
model_finetune.logit_scale = torch.nn.Parameter(torch.ones([]) * model_finetune.config.logit_scale_init_value)
|
|
|
|
train_with_hf_trainer(model_finetune, self.processor.tokenizer, data_args, training_args, model_args)
|
|
|
|
|
|
@property
|
|
def supported_formats(self):
|
|
onnxes = self.supported_model_names(format='onnx')
|
|
if self.model_name in onnxes:
|
|
return ['onnx']
|
|
else:
|
|
return ['pytorch']
|
|
|
|
@staticmethod
|
|
def supported_model_names(format: str = None):
|
|
full_list = ['blip_itm_base']
|
|
if format == None:
|
|
model_list = full_list
|
|
elif format == 'pytorch' or format == 'torchscript' or format == 'onnx':
|
|
model_list = full_list
|
|
else:
|
|
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".')
|
|
return model_list
|
|
|
|
def save_model(self, model_type: str = 'pytorch', output_file: str = 'default'):
|
|
import os
|
|
from PIL import Image
|
|
from torch.onnx import export as onnx_export
|
|
|
|
if output_file == 'default':
|
|
output_file = str(Path(__file__).parent)
|
|
output_file = os.path.join(output_file, 'saved', model_type)
|
|
os.makedirs(output_file, exist_ok=True)
|
|
name = self.model_name.replace('/', '-')
|
|
output_file = os.path.join(output_file, name)
|
|
if model_type in ['pytorch', 'torchscript']:
|
|
output_file = output_file + '.pt'
|
|
elif model_type == 'onnx':
|
|
output_file = output_file + '.onnx'
|
|
else:
|
|
raise AttributeError('Unsupported model_type.')
|
|
|
|
if self.modality == 'image':
|
|
sz = self.processor.image_processor.size
|
|
if isinstance(sz, int):
|
|
h = sz
|
|
w = sz
|
|
elif isinstance(sz, dict):
|
|
h = sz['height']
|
|
w = sz['width']
|
|
dummy_input = Image.new('RGB', (w, h), color = 'red')
|
|
inputs = self.processor(images=dummy_input, return_tensors='pt') # a dictionary
|
|
elif self.modality == 'text':
|
|
dummy_input = 'dummy'
|
|
inputs = self.processor(text=dummy_input, padding=True, return_tensors='pt')
|
|
else:
|
|
raise ValueError('modality[{}] not implemented.'.format(self.modality))
|
|
|
|
if model_type == 'pytorch':
|
|
torch.save(self._model, output_file)
|
|
elif model_type == 'torchscript':
|
|
inputs = list(inputs.values())
|
|
try:
|
|
try:
|
|
jit_model = torch.jit.script(self._model)
|
|
except Exception:
|
|
jit_model = torch.jit.trace(self._model, inputs, strict=False)
|
|
torch.jit.save(jit_model, output_file)
|
|
except Exception as e:
|
|
log.error(f'Fail to save as torchscript: {e}.')
|
|
raise RuntimeError(f'Fail to save as torchscript: {e}.')
|
|
elif model_type == 'onnx':
|
|
if self.modality == 'image':
|
|
input_names= ['pixel_values']
|
|
output_names=['image_embeds']
|
|
dynamic_axes={'pixel_values': {0: 'batch'}, 'image_embeds': {0: 'batch'}}
|
|
elif self.modality == 'text':
|
|
input_names= ['input_ids', 'attention_mask']
|
|
output_names=['text_embeds']
|
|
dynamic_axes={'input_ids': {0: 'batch', 1: 'sequence'}, 'attention_mask': {0: 'batch', 1: 'sequence'}, 'text_embeds': {0: 'batch'}}
|
|
else:
|
|
raise ValueError('modality[{}] not implemented.'.format(self.modality))
|
|
|
|
onnx_export(self._model,
|
|
(dict(inputs),),
|
|
f=Path(output_file),
|
|
input_names= input_names,
|
|
output_names=output_names,
|
|
dynamic_axes=dynamic_axes,
|
|
do_constant_folding=True,
|
|
opset_version=14,
|
|
)
|
|
else:
|
|
pass
|
|
raise NotImplementedError
|
|
|
|
|